Suppr超能文献

尿激酶:乙酸激酶的结构,磷酸转移酶ASKHA超家族的一员。

Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases.

作者信息

Buss K A, Cooper D R, Ingram-Smith C, Ferry J G, Sanders D A, Hasson M S

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

J Bacteriol. 2001 Jan;183(2):680-6. doi: 10.1128/JB.183.2.680-686.2001.

Abstract

Acetate kinase, an enzyme widely distributed in the Bacteria and Archaea domains, catalyzes the phosphorylation of acetate. We have determined the three-dimensional structure of Methanosarcina thermophila acetate kinase bound to ADP through crystallography. As we previously predicted, acetate kinase contains a core fold that is topologically identical to that of the ADP-binding domains of glycerol kinase, hexokinase, the 70-kDa heat shock cognate (Hsc70), and actin. Numerous charged active-site residues are conserved within acetate kinases, but few are conserved within the phosphotransferase superfamily. The identity of the points of insertion of polypeptide segments into the core fold of the superfamily members indicates that the insertions existed in the common ancestor of the phosphotransferases. Another remarkable shared feature is the unusual, epsilon conformation of the residue that directly precedes a conserved glycine residue (Gly-331 in acetate kinase) that binds the alpha-phosphate of ADP. Structural, biochemical, and geochemical considerations indicate that an acetate kinase may be the ancestral enzyme of the ASKHA (acetate and sugar kinases/Hsc70/actin) superfamily of phosphotransferases.

摘要

乙酸激酶是一种广泛分布于细菌域和古菌域的酶,可催化乙酸的磷酸化反应。我们通过晶体学确定了嗜热甲烷八叠球菌乙酸激酶与ADP结合的三维结构。正如我们之前所预测的,乙酸激酶含有一个核心折叠结构,其拓扑结构与甘油激酶、己糖激酶、70 kDa热休克同源蛋白(Hsc70)和肌动蛋白的ADP结合结构域相同。在乙酸激酶中,许多带电荷的活性位点残基是保守的,但在磷酸转移酶超家族中保守的残基很少。多肽片段插入超家族成员核心折叠结构的位点表明,这些插入存在于磷酸转移酶的共同祖先中。另一个显著的共同特征是,在结合ADP的α-磷酸基团的保守甘氨酸残基(乙酸激酶中的Gly-331)之前的残基呈现出不寻常的ε构象。结构、生化和地球化学方面的考虑表明,乙酸激酶可能是磷酸转移酶ASKHA(乙酸和糖激酶/Hsc70/肌动蛋白)超家族的祖先酶。

相似文献

1
Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases.
J Bacteriol. 2001 Jan;183(2):680-6. doi: 10.1128/JB.183.2.680-686.2001.
3
Site-directed mutational analysis of active site residues in the acetate kinase from Methanosarcina thermophila.
J Biol Chem. 2001 Nov 30;276(48):45059-64. doi: 10.1074/jbc.M108355200. Epub 2001 Sep 18.
4
Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila.
J Biol Chem. 2005 Mar 18;280(11):10731-42. doi: 10.1074/jbc.M412118200. Epub 2005 Jan 12.
5
Crystallization of acetate kinase from Methanosarcina thermophila and prediction of its fold.
Protein Sci. 1997 Dec;6(12):2659-62. doi: 10.1002/pro.5560061222.
6
Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase.
J Bacteriol. 2005 Apr;187(7):2386-94. doi: 10.1128/JB.187.7.2386-2394.2005.
8
Investigation of the Methanosarcina thermophila acetate kinase mechanism by fluorescence quenching.
Biochemistry. 2007 Dec 11;46(49):14170-6. doi: 10.1021/bi701292a. Epub 2007 Nov 14.
9
Evidence for a transition state analog, MgADP-aluminum fluoride-acetate, in acetate kinase from Methanosarcina thermophila.
J Biol Chem. 2002 Jun 21;277(25):22547-52. doi: 10.1074/jbc.M105921200. Epub 2002 Apr 17.

引用本文的文献

1
Biophysical and biochemical evidence for the role of acetate kinases (AckAs) in an acetogenic pathway in pathogenic spirochetes.
PLoS One. 2025 Jan 9;20(1):e0312642. doi: 10.1371/journal.pone.0312642. eCollection 2025.
3
Biological Function of Prophage-Related Gene Cluster Δ~Δ of CHN25.
Int J Mol Sci. 2024 Jan 23;25(3):1393. doi: 10.3390/ijms25031393.
4
Conservation and Diversification of tRNA tA-Modifying Enzymes across the Three Domains of Life.
Int J Mol Sci. 2022 Nov 6;23(21):13600. doi: 10.3390/ijms232113600.
5
: A Model for Mechanistic Understanding of Aceticlastic and Reverse Methanogenesis.
Front Microbiol. 2020 Jul 28;11:1806. doi: 10.3389/fmicb.2020.01806. eCollection 2020.
6
Characterization of the phosphotransacetylase-acetate kinase pathway for ATP production in .
J Oral Microbiol. 2019 Apr 4;11(1):1588086. doi: 10.1080/20002297.2019.1588086. eCollection 2019.
9
Acetate Metabolism in Anaerobes from the Domain Archaea.
Life (Basel). 2015 Jun 9;5(2):1454-71. doi: 10.3390/life5021454.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Detection, delineation, measurement and display of cavities in macromolecular structures.
Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178-85. doi: 10.1107/S0907444993011333.
3
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
4
Enzymatic phosphorylation of acetate.
J Biol Chem. 1954 Dec;211(2):737-56.
5
Identification of essential arginines in the acetate kinase from Methanosarcina thermophila.
Biochemistry. 2000 Apr 4;39(13):3671-7. doi: 10.1021/bi991998h.
7
Signalling pathways in two-component phosphorelay systems.
Trends Microbiol. 1999 Mar;7(3):115-20. doi: 10.1016/s0966-842x(99)01458-4.
8
The case for a common ancestor: kinesin and myosin motor proteins and G proteins.
J Muscle Res Cell Motil. 1998 Nov;19(8):877-86. doi: 10.1023/a:1005489907021.
9
Crystallography & NMR system: A new software suite for macromolecular structure determination.
Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21. doi: 10.1107/s0907444998003254.
10
How do kinases transfer phosphoryl groups?
Structure. 1998 Apr 15;6(4):413-9. doi: 10.1016/s0969-2126(98)00043-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验