School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730030, China.
Int J Mol Sci. 2022 Nov 6;23(21):13600. doi: 10.3390/ijms232113600.
The universal -threonylcarbamoyladenosine (tA) modification occurs at position 37 of tRNAs that decipher codons starting with adenosine. Mechanistically, tA stabilizes structural configurations of the anticodon stem loop, promotes anticodon-codon pairing and safeguards the translational fidelity. The biosynthesis of tRNA tA is co-catalyzed by two universally conserved protein families of TsaC/Sua5 (COG0009) and TsaD/Kae1/Qri7 (COG0533). Enzymatically, TsaC/Sua5 protein utilizes the substrates of -threonine, HCO/CO and ATP to synthesize an intermediate -threonylcarbamoyladenylate, of which the threonylcarbamoyl-moiety is subsequently transferred onto the A37 of substrate tRNAs by the TsaD-TsaB -TsaE complex in bacteria or by the KEOPS complex in archaea and eukaryotic cytoplasm, whereas Qri7/OSGEPL1 protein functions on its own in mitochondria. Depletion of tRNA tA interferes with protein homeostasis and gravely affects the life of unicellular organisms and the fitness of higher eukaryotes. Pathogenic mutations of YRDC, OSGEPL1 and KEOPS are implicated in a number of human mitochondrial and neurological diseases, including autosomal recessive Galloway-Mowat syndrome. The molecular mechanisms underscoring both the biosynthesis and cellular roles of tRNA tA are presently not well elucidated. This review summarizes current mechanistic understandings of the catalysis, regulation and disease implications of tRNA tA-biosynthetic machineries of three kingdoms of life, with a special focus on delineating the structure-function relationship from perspectives of conservation and diversity.
通用的 threonylcarbamoyladenosine(tA)修饰发生在起始于腺苷的密码子的 tRNA 的位置 37 上。从机制上讲,tA 稳定反密码子茎环的结构构象,促进反密码子-密码子配对,并确保翻译保真度。tRNA tA 的生物合成由两个普遍保守的蛋白质家族 TsaC/Sua5(COG0009)和 TsaD/Kae1/Qri7(COG0533)共同催化。从酶学上讲,TsaC/Sua5 蛋白利用 -苏氨酸、HCO/CO 和 ATP 的底物合成中间产物 -threonylcarbamoyladenylate,其中 threonylcarbamoyl 部分随后由细菌中的 TsaD-TsaB-TsaE 复合物或古菌和真核细胞质中的 KEOPS 复合物转移到底物 tRNA 的 A37 上,而 Qri7/OSGEPL1 蛋白则在其自身在线粒体中发挥作用。tRNA tA 的消耗会干扰蛋白质平衡,并严重影响单细胞生物的生命和高等真核生物的适应性。YRDC、OSGEPL1 和 KEOPS 的致病突变与许多人类线粒体和神经疾病有关,包括常染色体隐性 Galloway-Mowat 综合征。tRNA tA 生物合成机制的催化、调节和疾病影响的分子机制目前尚未得到很好的阐明。本综述总结了目前对生命三个领域的 tRNA tA 生物合成机制的催化、调节和疾病意义的机制理解,特别强调了从保守性和多样性的角度来描述结构-功能关系。