Jannink J L, Jansen R
Wageningen-UR Centre for Biometry, Plant Research International, 6700 AA Wageningen, The Netherlands.
Genetics. 2001 Jan;157(1):445-54. doi: 10.1093/genetics/157.1.445.
The discovery of epistatically interacting QTL is hampered by the intractability and low power to detect QTL in multidimensional genome searches. We describe a new method that maps epistatic QTL by identifying loci of high QTL by genetic background interaction. This approach allows detection of QTL involved not only in pairwise but also higher-order interaction, and does so with one-dimensional genome searches. The approach requires large populations derived from multiple related inbred-line crosses as is more typically available for plants. Using maximum likelihood, the method contrasts models in which QTL allelic values are either nested within, or fixed over, populations. We apply the method to simulated doubled-haploid populations derived from a diallel among three inbred parents and illustrate the power of the method to detect QTL of different effect size and different levels of QTL by genetic background interaction. Further, we show how the method can be used in conjunction with standard two-locus QTL detection models that use two-dimensional genome searches and find that the method may double the power to detect first-order epistasis.
在多维基因组搜索中,难以处理以及检测数量性状基因座(QTL)的低效能阻碍了对上位性相互作用QTL的发现。我们描述了一种通过识别因遗传背景相互作用而产生的高QTL位点来定位上位性QTL的新方法。这种方法不仅能够检测涉及成对相互作用的QTL,还能检测高阶相互作用的QTL,并且通过一维基因组搜索就能做到。该方法需要来自多个相关近交系杂交的大量群体,这在植物中更为常见。使用最大似然法,该方法对比了QTL等位基因值嵌套在群体内或在群体间固定的模型。我们将该方法应用于由三个近交亲本双列杂交产生的模拟双单倍体群体,并说明了该方法检测不同效应大小和不同上位性水平QTL的能力。此外,我们展示了该方法如何与使用二维基因组搜索的标准双位点QTL检测模型结合使用,并发现该方法可能会使检测一阶上位性的效能提高一倍。