Suppr超能文献

用于玉米多个家系数量性状位点(QTL)定位的模型选择以及预测镰刀菌抗性性状的训练集设计。

Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize.

作者信息

Han Sen, Utz H Friedrich, Liu Wenxin, Schrag Tobias A, Stange Michael, Würschum Tobias, Miedaner Thomas, Bauer Eva, Schön Chris-Carolin, Melchinger Albrecht E

机构信息

Institute of Plant Breeding, Seed Science and Population Genetics (350a), University of Hohenheim, 70593, Stuttgart, Germany.

Crop Genetics and Breeding Department, China Agricultural University, Beijing, 100193, China.

出版信息

Theor Appl Genet. 2016 Feb;129(2):431-44. doi: 10.1007/s00122-015-2637-3. Epub 2015 Dec 10.

Abstract

KEY MESSAGE

QTL analysis for Fusarium resistance traits with multiple connected families detected more QTL than single-family analysis. Prediction accuracy was tightly associated with the kinship of the validation and training set.

ABSTRACT

QTL mapping has recently shifted from analysis of single families to multiple, connected families and several biometric models have been suggested. Using a high-density consensus map with 2472 marker loci, we performed QTL mapping with five connected bi-parental families with 639 doubled-haploid (DH) lines in maize for ear rot resistance and analyzed traits DON, Gibberella ear rot severity (GER), and days to silking (DS). Five biometric models differing in the assumption about the number and effects of alleles at QTL were compared. Model 2 to 5 performing joint analyses across all families and using linkage and/or linkage disequilibrium (LD) information identified all and even further QTL than Model 1 (single-family analyses) and generally explained a higher proportion pG of the genotypic variance for all three traits. QTL for DON and GER were mostly family specific, but several QTL for DS occurred in multiple families. Many QTL displayed large additive effects and most alleles increasing resistance originated from a resistant parent. Interactions between detected QTL and genetic background (family) occurred rarely and were comparatively small. Detailed analysis of three fully connected families yielded higher pG values for Model 3 or 4 than for Model 2 and 5, irrespective of the size NTS of the training set (TS). In conclusion, Model 3 and 4 can be recommended for QTL-based prediction with larger families. Including a sufficiently large number of full sibs in the TS helped to increase QTL-based prediction accuracy (rVS) for various scenarios differing in the composition of the TS.

摘要

关键信息

利用多个关联家系对镰刀菌抗性性状进行QTL分析比单一家系分析检测到更多的QTL。预测准确性与验证集和训练集的亲缘关系密切相关。

摘要

QTL定位最近已从单一家系分析转向多个关联家系分析,并且已经提出了几种生物统计学模型。我们使用具有2472个标记位点的高密度整合图谱,对玉米中5个关联双亲子代家系的639个加倍单倍体(DH)系进行了穗腐病抗性的QTL定位,并分析了呕吐毒素(DON)、赤霉菌穗腐病严重程度(GER)和抽丝天数(DS)等性状。比较了5种生物统计学模型,这些模型在QTL等位基因数量和效应的假设上有所不同。模型2至5对所有家系进行联合分析,并使用连锁和/或连锁不平衡(LD)信息,比模型1(单一家系分析)鉴定出了更多甚至更多的QTL,并且通常解释了所有三个性状更高比例的基因型方差pG。DON和GER的QTL大多是家系特异性的,但多个家系中出现了几个DS的QTL。许多QTL表现出较大的加性效应,大多数增加抗性的等位基因来自抗性亲本。检测到的QTL与遗传背景(家系)之间的相互作用很少发生且相对较小。对三个完全关联家系的详细分析表明,无论训练集(TS)的大小NTS如何,模型3或4的pG值都高于模型2和5。总之,对于基于QTL的较大家系预测,推荐使用模型3和4。在TS中纳入足够数量的全同胞有助于提高基于QTL的预测准确性(rVS),适用于TS组成不同的各种情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验