Jaeger L, Westhof E, Leontis N B
Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
Nucleic Acids Res. 2001 Jan 15;29(2):455-63. doi: 10.1093/nar/29.2.455.
Structural information on complex biological RNA molecules can be exploited to design tectoRNAs or artificial modular RNA units that can self-assemble through tertiary interactions thereby forming nanoscale RNA objects. The selective interactions of hairpin tetraloops with their receptors can be used to mediate tectoRNA assembly. Here we report on the modulation of the specificity and the strength of tectoRNA assembly (in the nanomolar to micromolar range) by variation of the length of the RNA subunits, the nature of their interacting motifs and the degree of flexibility of linker regions incorporated into the molecules. The association is also dependent on the concentration of magnesium. Monitoring of tectoRNA assembly by lead(II) cleavage protection indicates that some degree of structural flexibility is required for optimal binding. With tectoRNAs one can compare the binding affinities of different tertiary motifs and quantify the strength of individual interactions. Furthermore, in analogy to the synthons used in organic chemistry to synthesize more complex organic compounds, tectoRNAs form the basic assembly units for constructing complex RNA structures on the nanometer scale. Thus, tectoRNA provides a means for constructing molecular scaffoldings that organize functional modules in three-dimensional space for a wide range of applications.
复杂生物RNA分子的结构信息可用于设计tectoRNA或人工模块化RNA单元,这些单元可通过三级相互作用进行自组装,从而形成纳米级RNA物体。发夹四环与其受体的选择性相互作用可用于介导tectoRNA组装。在此,我们报告了通过改变RNA亚基的长度、其相互作用基序的性质以及掺入分子中的连接区的灵活程度,对tectoRNA组装的特异性和强度(在纳摩尔至微摩尔范围内)进行调控。这种结合还取决于镁的浓度。通过铅(II)切割保护监测tectoRNA组装表明,最佳结合需要一定程度的结构灵活性。利用tectoRNAs,可以比较不同三级基序的结合亲和力,并量化单个相互作用的强度。此外,类似于有机化学中用于合成更复杂有机化合物的合成子,tectoRNAs构成了在纳米尺度上构建复杂RNA结构的基本组装单元。因此,tectoRNA提供了一种构建分子支架的方法,该支架可在三维空间中组织功能模块,以用于广泛的应用。