Yip Theresa, Qi Xiaodong, Yan Hao, Chang Yung
School of Life Sciences, Arizona State University Tempe AZ 85281 USA
Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University Tempe AZ 85281 USA.
RSC Adv. 2024 Sep 11;14(39):28807-28821. doi: 10.1039/d4ra03823a. eCollection 2024 Sep 4.
RNA-based therapeutics have gained wide public interest in recent years. RNA is a versatile molecule that exists in many forms including mRNA, siRNA, miRNA, ribozymes, and other non-coding RNAs and is primarily applied for gene therapy. RNA is also used as a modular building block to construct RNA nanostructures. The programmable nature of RNA nanostructures enables the generation of simple, modulable, and multi-functional RNA-based therapeutics. Although the therapeutic application of RNA may be limited due to its structural instability, advances in RNA nanotechnology have improved the stability of RNA nanostructures for greater application. Various strategies have been developed to enhance the stability of RNA nanostructures enabling their application . In this review, we examine the therapeutic applications of RNA nanostructures. Non-immunogenic RNA nanostructures can be rationally designed with functional RNA molecules to modulate gene expression for gene therapy. On the other hand, nucleic acids can be sensed by cellular receptors to elicit an innate immune response, for which certain DNA and RNA motifs can function as adjuvants. Taking advantage of this adjuvant potential, RNA nanostructures can be used for immunotherapy and be designed for cancer vaccines. Thus, we examine the therapeutic application of immunogenic RNA nanostructures for cancer immunotherapy. RNA nanostructures represent promising platforms to design new nanodrugs, gene therapeutics, immunotherapeutic adjuvants, and cancer vaccines. Ongoing research in the field of RNA nanotechnology will continue to empower the development of RNA nanostructure-based therapeutics with high efficacy and limited toxicity.
近年来,基于RNA的疗法引起了广泛的公众关注。RNA是一种多功能分子,以多种形式存在,包括信使核糖核酸(mRNA)、小干扰核糖核酸(siRNA)、微小核糖核酸(miRNA)、核酶和其他非编码RNA,主要应用于基因治疗。RNA还用作构建RNA纳米结构的模块化构建单元。RNA纳米结构的可编程性质使得能够生成简单、可调节且多功能的基于RNA的疗法。尽管由于其结构不稳定性,RNA的治疗应用可能受到限制,但RNA纳米技术的进展提高了RNA纳米结构的稳定性,以实现更广泛的应用。已经开发了各种策略来提高RNA纳米结构的稳定性,使其能够得到应用。在本综述中,我们研究了RNA纳米结构的治疗应用。非免疫原性RNA纳米结构可以与功能性RNA分子进行合理设计,以调节基因表达用于基因治疗。另一方面,核酸可以被细胞受体感知以引发先天免疫反应,某些DNA和RNA基序可以作为佐剂发挥作用。利用这种佐剂潜力,RNA纳米结构可用于免疫治疗并设计用于癌症疫苗。因此,我们研究了免疫原性RNA纳米结构在癌症免疫治疗中的治疗应用。RNA纳米结构是设计新型纳米药物、基因疗法、免疫治疗佐剂和癌症疫苗的有前景的平台。RNA纳米技术领域正在进行的研究将继续推动基于RNA纳米结构的高效低毒疗法的发展。