Suppr超能文献

Inactivation of iron responsive element-binding capacity and aconitase function of iron regulatory protein-1 of skin cells by ultraviolet A.

作者信息

Giordani A, Martin M E, Beaumont C, Santus R, Morlière P

机构信息

Muséum National d'Histoire Naturelle, Laboratoire de Photobiologie, Paris, France.

出版信息

Photochem Photobiol. 2000 Dec;72(6):746-52. doi: 10.1562/0031-8655(2000)072<0746:ioireb>2.0.co;2.

Abstract

The ultraviolet-A (UVA) component of sunlight produces in cutaneous cells a highly toxic oxidative stress mediated by redox cycling reactions of Fe ions. A tight regulation of cell iron uptake and storage by iron regulatory proteins (IRP) of keratinocytes and fibroblasts avoids these damaging reactions. We report here that about 40 J/cm2 of UVA are required to inactivate half of the binding capacity of apo-IRP-1 to iron responsive elements (IRE) of RNA whereas 15 J/cm2 already inhibit half of the holo-IRP-1 aconitase activity. No increase in the holo-IRP-1 activity is observed during the apo-IRP-1 photoinactivation suggesting that UVA does not trigger a shift between these two forms. As opposed to holo-IRP-1, which contains a 4Fe-4S cluster, apo-IRP-1 has no UVA chromophore. Thus it should be inactivated indirectly by reactive oxygen species generated by the UVA-induced endogenous photo-oxidative stress. The apo-IRP-1 photoinactivation is weakly prevented by the lipophilic oxyradical scavenger vitamin E but not by the hydrophilic azide anion, a singlet oxygen quencher or by diethyldithiocarbamate, a superoxide dismutase inhibitor. However, full protection against photoinactivation of the apo form is observed after incubation with N-acetylcysteine but the latter only partially protects the aconitase function of the holo-IRP-1 from photoinactivation. The marked difference in the kinetics of photoinactivation of the apo and holo forms, the light dose-independent effect of the sulfhydril group reagent, 2-mercaptoethanol and the partial protection brought by the ferric ion complexing agent desferrioxamine suggest that the photochemistry of the 4Fe-4S cluster of the holo form plays little, if any, role in the photoinactivation of the apo-IRP-1/IRE interaction. It is concluded that the apo/holo equilibrium is irreversibly destroyed by UVA irradiation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验