Suppr超能文献

医学成像表面配准技术的算法概述

An algorithmic overview of surface registration techniques for medical imaging.

作者信息

Audette M A, Ferrie F P, Peters T M

机构信息

Montreal Neurological Institute, McGill University, Quebec, Canada.

出版信息

Med Image Anal. 2000 Sep;4(3):201-17. doi: 10.1016/s1361-8415(00)00014-1.

Abstract

This paper presents a literature survey of automatic 3D surface registration techniques emphasizing the mathematical and algorithmic underpinnings of the subject. The relevance of surface registration to medical imaging is that there is much useful anatomical information in the form of collected surface points which originate from complimentary modalities and which must be reconciled. Surface registration can be roughly partitioned into three issues: choice of transformation, elaboration of surface representation and similarity criterion, and matching and global optimization. The first issue concerns the assumptions made about the nature of relationships between the two modalities, e.g. whether a rigid-body assumption applies, and if not, what type and how general a relation optimally maps one modality onto the other. The second issue determines what type of information we extract from the 3D surfaces, which typically characterizes their local or global shape, and how we organize this information into a representation of the surface which will lead to improved efficiency and robustness in the last stage. The last issue pertains to how we exploit this information to estimate the transformation which best aligns local primitives in a globally consistent manner or which maximizes a measure of the similarity in global shape of two surfaces. Within this framework, this paper discusses in detail each surface registration issue and reviews the state-of-the-art among existing techniques.

摘要

本文对自动三维表面配准技术进行了文献综述,重点阐述了该主题的数学和算法基础。表面配准与医学成像的相关性在于,以采集到的表面点形式存在着大量有用的解剖信息,这些表面点源自互补模态,必须进行整合。表面配准大致可分为三个问题:变换的选择、表面表示和相似性准则的细化,以及匹配和全局优化。第一个问题涉及对两种模态之间关系性质的假设,例如刚体假设是否适用,如果不适用,何种类型以及何种一般性的关系能将一种模态最优地映射到另一种模态上。第二个问题决定了我们从三维表面提取何种类型的信息,这些信息通常表征其局部或全局形状,以及我们如何将这些信息组织成表面表示,这将在最后阶段提高效率和鲁棒性。最后一个问题涉及我们如何利用这些信息来估计变换,该变换能以全局一致的方式最佳对齐局部基元,或者使两个表面全局形状的相似性度量最大化。在此框架内,本文详细讨论了每个表面配准问题,并综述了现有技术中的最新进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验