Zhang Jingya, Wang Jiajun, Wang Xiuying, Gao Xin, Feng Dagan
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, P.R.China; Changshu Inst Technol, Dept Phys, Changshu 215500, P.R.China.
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, P.R.China.
PLoS One. 2015 Oct 23;10(10):e0140567. doi: 10.1371/journal.pone.0140567. eCollection 2015.
Due to being derived from linear assumption, most elastic body based non-rigid image registration algorithms are facing challenges for soft tissues with complex nonlinear behavior and with large deformations. To take into account the geometric nonlinearity of soft tissues, we propose a registration algorithm on the basis of Newtonian differential equation. The material behavior of soft tissues is modeled as St. Venant-Kirchhoff elasticity, and the nonlinearity of the continuum represents the quadratic term of the deformation gradient under the Green- St.Venant strain. In our algorithm, the elastic force is formulated as the derivative of the deformation energy with respect to the nodal displacement vectors of the finite element; the external force is determined by the registration similarity gradient flow which drives the floating image deforming to the equilibrium condition. We compared our approach to three other models: 1) the conventional linear elastic finite element model (FEM); 2) the dynamic elastic FEM; 3) the robust block matching (RBM) method. The registration accuracy was measured using three similarities: MSD (Mean Square Difference), NC (Normalized Correlation) and NMI (Normalized Mutual Information), and was also measured using the mean and max distance between the ground seeds and corresponding ones after registration. We validated our method on 60 image pairs including 30 medical image pairs with artificial deformation and 30 clinical image pairs for both the chest chemotherapy treatment in different periods and brain MRI normalization. Our method achieved a distance error of 0.320±0.138 mm in x direction and 0.326±0.111 mm in y direction, MSD of 41.96±13.74, NC of 0.9958±0.0019, NMI of 1.2962±0.0114 for images with large artificial deformations; and average NC of 0.9622±0.008 and NMI of 1.2764±0.0089 for the real clinical cases. Student's t-test demonstrated that our model statistically outperformed the other methods in comparison (p-values <0.05).
由于源自线性假设,大多数基于弹性体的非刚性图像配准算法在处理具有复杂非线性行为和大变形的软组织时面临挑战。为了考虑软组织的几何非线性,我们提出了一种基于牛顿微分方程的配准算法。软组织的材料行为被建模为圣维南 - 柯西弹性,连续体的非线性表示格林 - 圣维南应变下变形梯度的二次项。在我们的算法中,弹性力被公式化为变形能量相对于有限元节点位移向量的导数;外力由配准相似性梯度流确定,该梯度流驱动浮动图像变形至平衡状态。我们将我们的方法与其他三种模型进行了比较:1)传统的线性弹性有限元模型(FEM);2)动态弹性有限元模型;3)鲁棒块匹配(RBM)方法。使用三种相似性指标来衡量配准精度:均方差异(MSD)、归一化相关性(NC)和归一化互信息(NMI),并且还使用配准后地面种子点与相应种子点之间的平均距离和最大距离来衡量。我们在60对图像上验证了我们的方法,其中包括30对具有人工变形的医学图像对以及30对不同时期胸部化疗治疗和脑部MRI归一化的临床图像对。对于具有大人工变形的图像,我们的方法在x方向上实现了0.320±0.138毫米的距离误差,在y方向上实现了0.326±0.111毫米的距离误差,MSD为41.96±13.74,NC为0.9958±0.0019,NMI为1.2962±0.0114;对于实际临床病例,平均NC为0.9622±0.008,NMI为1.2764±0.0089。学生t检验表明,与其他方法相比,我们的模型在统计学上表现更优(p值<0.05)。