Department of Radiation Oncology, University of Florida, Gainesville, Florida 32611, USA.
Med Phys. 2009 Dec;36(12):5391-403. doi: 10.1118/1.3250843.
Rigid 2D-3D registration is an alternative to 3D-3D registration for cases where largely bony anatomy can be used for patient positioning in external beam radiation therapy. In this article, the authors evaluated seven similarity measures for use in the intensity-based rigid 2D-3D registration using a variation in Skerl's similarity measure evaluation protocol.
The seven similarity measures are partitioned intensity uniformity, normalized mutual information (NMI), normalized cross correlation (NCC), entropy of the difference image, pattern intensity (PI), gradient correlation (GC), and gradient difference (GD). In contrast to traditional evaluation methods that rely on visual inspection or registration outcomes, the similarity measure evaluation protocol probes the transform parameter space and computes a number of similarity measure properties, which is objective and optimization method independent. The variation in protocol offers an improved property in the quantification of the capture range. The authors used this protocol to investigate the effects of the downsampling ratio, the region of interest, and the method of the digitally reconstructed radiograph (DRR) calculation [i.e., the incremental ray-tracing method implemented on a central processing unit (CPU) or the 3D texture rendering method implemented on a graphics processing unit (GPU)] on the performance of the similarity measures. The studies were carried out using both the kilovoltage (kV) and the megavoltage (MV) images of an anthropomorphic cranial phantom and the MV images of a head-and-neck cancer patient.
Both the phantom and the patient studies showed the 2D-3D registration using the GPU-based DRR calculation yielded better robustness, while providing similar accuracy compared to the CPU-based calculation. The phantom study using kV imaging suggested that NCC has the best accuracy and robustness, but its slow function value change near the global maximum requires a stricter termination condition for an optimization method. The phantom study using MV imaging indicated that PI, GD, and GC have the best accuracy, while NCC and NMI have the best robustness. The clinical study using MV imaging showed that NCC and NMI have the best robustness.
The authors evaluated the performance of seven similarity measures for use in 2D-3D image registration using the variation in Skerl's similarity measure evaluation protocol. The generalized methodology can be used to select the best similarity measures, determine the optimal or near optimal choice of parameter, and choose the appropriate registration strategy for the end user in his specific registration applications in medical imaging.
在外部束放射治疗中,当主要骨性解剖结构可用于患者定位时,刚性 2D-3D 配准是 3D-3D 配准的替代方法。本文作者使用 Skerl 的相似性度量评估协议的变体,评估了七种用于基于强度的刚性 2D-3D 配准的相似性度量。
这七种相似性度量分为分区强度均匀性、归一化互信息 (NMI)、归一化互相关 (NCC)、差分图像熵、模式强度 (PI)、梯度相关 (GC) 和梯度差 (GD)。与传统的依赖于视觉检查或配准结果的评估方法不同,相似性度量评估协议探测变换参数空间并计算许多相似性度量属性,这是客观的,与优化方法无关。协议的变体在捕获范围的量化方面提供了改进的特性。作者使用该协议研究了下采样比、感兴趣区域以及数字重建射线照片 (DRR)计算方法(即中央处理器 (CPU) 上实现的增量射线追踪方法或图形处理单元 (GPU) 上实现的 3D 纹理渲染方法)对相似性度量性能的影响。研究使用了一个颅腔模拟体模的千伏 (kV) 和兆伏 (MV) 图像以及一个头颈部癌症患者的 MV 图像进行。
体模和患者研究均表明,使用基于 GPU 的 DRR 计算的 2D-3D 配准具有更好的鲁棒性,同时与基于 CPU 的计算相比提供了相似的准确性。使用 MV 成像进行的体模研究表明,NCC 具有最佳的准确性和鲁棒性,但在全局最大值附近其函数值变化缓慢,因此需要为优化方法设置更严格的终止条件。使用 MV 成像进行的体模研究表明,PI、GD 和 GC 具有最佳的准确性,而 NCC 和 NMI 具有最佳的鲁棒性。使用 MV 成像进行的临床研究表明,NCC 和 NMI 具有最佳的鲁棒性。
作者使用 Skerl 的相似性度量评估协议的变体评估了七种相似性度量在 2D-3D 图像配准中的性能。该通用方法可用于选择最佳相似性度量、确定参数的最佳或接近最佳选择,并为医疗成像中特定的注册应用中的最终用户选择合适的注册策略。