Quijano C, Hernandez-Saavedra D, Castro L, McCord J M, Freeman B A, Radi R
Departamento de Bioquimica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.
J Biol Chem. 2001 Apr 13;276(15):11631-8. doi: 10.1074/jbc.M009429200. Epub 2001 Jan 4.
Manganese superoxide dismutase (Mn-SOD), a critical mitochondrial antioxidant enzyme, becomes inactivated and nitrated in vitro and potentially in vivo by peroxynitrite. Since peroxynitrite readily reacts with transition metal centers, we assessed the role of the manganese ion in the reaction between peroxynitrite and Mn-SOD. Peroxynitrite reacts with human recombinant and Escherichia coli Mn-SOD with a second order rate constant of 1.0 +/- 0.2 x 10(5) and 1.4 +/- 0.2 x 10(5) m(-)1 s(-)1 at pH 7.47 and 37 degrees C, respectively. The E. coli apoenzyme, obtained by removing the manganese ion from the active site, presents a rate constant <10(4) m(-)1 s(-)1 for the reaction with peroxynitrite, whereas that of the manganese-reconstituted apoenzyme (apo/Mn) was comparable to that of the holoenzyme. Peroxynitrite-dependent nitration of 4-hydroxyphenylacetic acid was increased 21% by Mn-SOD. The apo/Mn also promoted nitration, but the apo and the zinc-substituted apoenzyme (apo/Zn) enzymes did not. The extent of tyrosine nitration in the enzyme was also affected by the presence and nature (i.e. manganese or zinc) of the metal center in the active site. For comparative purposes, we also studied the reaction of peroxynitrite with low molecular weight complexes of manganese and zinc with tetrakis-(4-benzoic acid) porphyrin (tbap). Mn(tbap) reacts with peroxynitrite with a rate constant of 6.8 +/- 0.1 x 10(4) m(-)1 s(-)1 and maximally increases nitration yields by 350%. Zn(tbap), on the other hand, affords protection against nitration. Our results indicate that the manganese ion in Mn-SOD plays an important role in the decomposition kinetics of peroxynitrite and in peroxynitrite-dependent nitration of self and remote tyrosine residues.
锰超氧化物歧化酶(Mn-SOD)是一种关键的线粒体抗氧化酶,在体外以及可能在体内会被过氧亚硝酸盐灭活并硝化。由于过氧亚硝酸盐能迅速与过渡金属中心发生反应,我们评估了锰离子在过氧亚硝酸盐与Mn-SOD反应中的作用。在pH 7.47和37摄氏度条件下,过氧亚硝酸盐与重组人Mn-SOD和大肠杆菌Mn-SOD反应的二级速率常数分别为1.0±0.2×10⁵和1.4±0.2×10⁵ m⁻¹ s⁻¹。通过从活性位点去除锰离子得到的大肠杆菌脱辅基酶,与过氧亚硝酸盐反应的速率常数<10⁴ m⁻¹ s⁻¹,而锰重构的脱辅基酶(脱辅基酶/Mn)的速率常数与全酶相当。Mn-SOD使过氧亚硝酸盐依赖的4-羟基苯乙酸硝化增加了21%。脱辅基酶/Mn也促进硝化,但脱辅基酶和锌取代的脱辅基酶(脱辅基酶/Zn)则不然。酶中酪氨酸硝化的程度也受到活性位点金属中心的存在及性质(即锰或锌)的影响。为作比较,我们还研究了过氧亚硝酸盐与锰和锌与四(4-苯甲酸)卟啉(tbap)形成的低分子量配合物的反应。Mn(tbap)与过氧亚硝酸盐反应的速率常数为6.8±0.1×10⁴ m⁻¹ s⁻¹,最大可使硝化产率提高350%。另一方面,Zn(tbap)能提供抗硝化保护。我们的结果表明,Mn-SOD中的锰离子在过氧亚硝酸盐的分解动力学以及过氧亚硝酸盐依赖的自身和远端酪氨酸残基的硝化中起重要作用。