Suppr超能文献

人锰超氧化物歧化酶与过氧亚硝酸根反应的机制:关键酪氨酸34的硝化作用

Mechanism of the Reaction of Human Manganese Superoxide Dismutase with Peroxynitrite: Nitration of Critical Tyrosine 34.

作者信息

Demicheli Verónica, Moreno Diego M, Jara Gabriel E, Lima Analía, Carballal Sebastián, Ríos Natalia, Batthyany Carlos, Ferrer-Sueta Gerardo, Quijano Celia, Estrı́n Darío A, Martí Marcelo A, Radi Rafael

机构信息

Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Avda. General Flores 2125, Montevideo, Uruguay.

Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República , Avda. General Flores 2125, Montevideo, Uruguay.

出版信息

Biochemistry. 2016 Jun 21;55(24):3403-17. doi: 10.1021/acs.biochem.6b00045. Epub 2016 Jun 10.

Abstract

Human Mn-containing superoxide dismutase (hMnSOD) is a mitochondrial enzyme that metabolizes superoxide radical (O2(•-)). O2(•-) reacts at diffusional rates with nitric oxide to yield a potent nitrating species, peroxynitrite anion (ONOO(-)). MnSOD is nitrated and inactivated in vivo, with active site Tyr34 as the key oxidatively modified residue. We previously reported a k of ∼1.0 × 10(5) M(-1) s(-1) for the reaction of hMnSOD with ONOO(-) by direct stopped-flow spectroscopy and the critical role of Mn in the nitration process. In this study, we further established the mechanism of the reaction of hMnSOD with ONOO(-), including the necessary re-examination of the second-order rate constant by an independent method and the delineation of the microscopic steps that lead to the regio-specific nitration of Tyr34. The redetermination of k was performed by competition kinetics utilizing coumarin boronic acid, which reacts with ONOO(-) at a rate of ∼1 × 10(6) M(-1) s(-1) to yield the fluorescence product, 7-hydroxycoumarin. Time-resolved fluorescence studies in the presence of increasing concentrations of hMnSOD provided a k of ∼1.0 × 10(5) M(-1) s(-1), fully consistent with the direct method. Proteomic analysis indicated that ONOO(-), but not other nitrating agents, mediates the selective modification of active site Tyr34. Hybrid quantum-classical (quantum mechanics/molecular mechanics) simulations supported a series of steps that involve the initial reaction of ONOO(-) with Mn(III) to yield Mn(IV) and intermediates that ultimately culminate in 3-nitroTyr34. The data reported herein provide a kinetic and mechanistic basis for rationalizing how MnSOD constitutes an intramitochondrial target for ONOO(-) and the microscopic events, with atomic level resolution, that lead to selective and efficient nitration of critical Tyr34.

摘要

人含锰超氧化物歧化酶(hMnSOD)是一种线粒体酶,可代谢超氧阴离子自由基(O2(•-))。O2(•-) 以扩散速率与一氧化氮反应生成一种强效硝化物质——过氧亚硝酸根阴离子(ONOO(-))。MnSOD在体内会被硝化并失活,活性位点的酪氨酸34(Tyr34)是关键的氧化修饰残基。我们之前通过直接停流光谱法报道了hMnSOD与ONOO(-)反应的速率常数k约为1.0×10(5) M(-1) s(-1),以及锰在硝化过程中的关键作用。在本研究中,我们进一步确定了hMnSOD与ONOO(-)反应的机制,包括通过独立方法对二级速率常数进行必要的重新测定,以及描绘导致Tyr34区域特异性硝化的微观步骤。通过使用香豆素硼酸的竞争动力学重新测定了k,香豆素硼酸与ONOO(-)以约1×10(6) M(-1) s(-1)的速率反应生成荧光产物7-羟基香豆素。在hMnSOD浓度不断增加的情况下进行的时间分辨荧光研究得出的k约为1.0×10(5) M(-1) s(-1),与直接方法完全一致。蛋白质组学分析表明,ONOO(-)而非其他硝化剂介导了活性位点Tyr34的选择性修饰。混合量子经典(量子力学/分子力学)模拟支持了一系列步骤,这些步骤涉及ONOO(-)与Mn(III)的初始反应生成Mn(IV)以及最终导致3-硝基Tyr34的中间体。本文报道的数据为阐明MnSOD如何构成线粒体内ONOO(-)的靶点以及导致关键Tyr34选择性和高效硝化的微观事件(具有原子水平分辨率)提供了动力学和机制基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验