From the Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.
J Biol Chem. 2014 May 2;289(18):12760-78. doi: 10.1074/jbc.M113.545590. Epub 2014 Mar 10.
Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 10(4) M(-1) s(-1) and 4.3 ± 0.4 × 10(4) M(-1) s(-1) at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr(35). Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys(83) mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys(83) present in Fe-SODB acts as an electron donor that repairs Tyr(35) radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.
克氏锥虫,恰加斯病的病原体,仅包含位于不同亚细胞隔室中的铁依赖性超氧化物歧化酶(Fe-SOD)。过氧亚硝酸盐,一种关键的细胞毒性和氧化效应生物分子,与 T. cruzi 线粒体(Fe-SODA)和细胞质(Fe-SODB)SOD 以每秒 4.6 ± 0.2×10(4) M(-1) s(-1)和 4.3 ± 0.4×10(4) M(-1) s(-1)的二级速率常数反应,在 pH 7.4 和 37°C 下,两种同工酶都被过氧亚硝酸盐剂量依赖性地硝化和失活。T. cruzi Fe-SODA 对过氧亚硝酸盐的敏感性类似于先前报道的大肠杆菌 Mn 和 Fe-SOD 以及哺乳动物 Mn-SOD,而 Fe-SODB 对氧化剂介导的失活异常抵抗。我们报告了质谱分析表明,过氧亚硝酸盐介导的 T. cruzi Fe-SOD 失活是由于关键且普遍保守的 Tyr(35)的特异性硝化。为了寻找结构差异,Fe-SODA 的晶体结构以 2.2 Å 的分辨率解决。比较两种 Fe-SOD 同工酶的结构分析揭示了关键半胱氨酸和色氨酸残基的差异。Fe-SODB 半胱氨酸的硫醇烷基化使酶对过氧亚硝酸盐更敏感。特别是,Cys(83)突变(Fe-SODA 中不存在的 C83S)增加了 Fe-SODB 对过氧亚硝酸盐的敏感性。分子动力学、电子顺磁共振和免疫自旋捕获分析表明,Fe-SODB 中的 Cys(83)作为电子供体,通过分子内电子转移修复 Tyr(35)自由基,防止过氧亚硝酸盐依赖性硝化和随后的 Fe-SODB 失活。暴露于外源性或内源性过氧亚硝酸盐的寄生虫导致 Fe-SODA 的硝化和失活,但不是 Fe-SODB,这表明这些酶在寄生虫感染哺乳动物细胞期间发挥独特的生物学作用。