Suppr超能文献

过氧亚硝酸盐介导的克氏锥虫铁超氧化物歧化酶(Fe-SOD)A 和 B 的硝化和失活的结构和分子基础:由于 Fe-SODB 中的 Cys83 通过分子内电子转移修复 Tyr35 自由基,导致不同的敏感性。

Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer.

机构信息

From the Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.

出版信息

J Biol Chem. 2014 May 2;289(18):12760-78. doi: 10.1074/jbc.M113.545590. Epub 2014 Mar 10.

Abstract

Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 10(4) M(-1) s(-1) and 4.3 ± 0.4 × 10(4) M(-1) s(-1) at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr(35). Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys(83) mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys(83) present in Fe-SODB acts as an electron donor that repairs Tyr(35) radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.

摘要

克氏锥虫,恰加斯病的病原体,仅包含位于不同亚细胞隔室中的铁依赖性超氧化物歧化酶(Fe-SOD)。过氧亚硝酸盐,一种关键的细胞毒性和氧化效应生物分子,与 T. cruzi 线粒体(Fe-SODA)和细胞质(Fe-SODB)SOD 以每秒 4.6 ± 0.2×10(4) M(-1) s(-1)和 4.3 ± 0.4×10(4) M(-1) s(-1)的二级速率常数反应,在 pH 7.4 和 37°C 下,两种同工酶都被过氧亚硝酸盐剂量依赖性地硝化和失活。T. cruzi Fe-SODA 对过氧亚硝酸盐的敏感性类似于先前报道的大肠杆菌 Mn 和 Fe-SOD 以及哺乳动物 Mn-SOD,而 Fe-SODB 对氧化剂介导的失活异常抵抗。我们报告了质谱分析表明,过氧亚硝酸盐介导的 T. cruzi Fe-SOD 失活是由于关键且普遍保守的 Tyr(35)的特异性硝化。为了寻找结构差异,Fe-SODA 的晶体结构以 2.2 Å 的分辨率解决。比较两种 Fe-SOD 同工酶的结构分析揭示了关键半胱氨酸和色氨酸残基的差异。Fe-SODB 半胱氨酸的硫醇烷基化使酶对过氧亚硝酸盐更敏感。特别是,Cys(83)突变(Fe-SODA 中不存在的 C83S)增加了 Fe-SODB 对过氧亚硝酸盐的敏感性。分子动力学、电子顺磁共振和免疫自旋捕获分析表明,Fe-SODB 中的 Cys(83)作为电子供体,通过分子内电子转移修复 Tyr(35)自由基,防止过氧亚硝酸盐依赖性硝化和随后的 Fe-SODB 失活。暴露于外源性或内源性过氧亚硝酸盐的寄生虫导致 Fe-SODA 的硝化和失活,但不是 Fe-SODB,这表明这些酶在寄生虫感染哺乳动物细胞期间发挥独特的生物学作用。

相似文献

2
Cytosolic Fe-superoxide dismutase safeguards from macrophage-derived superoxide radical.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8879-8888. doi: 10.1073/pnas.1821487116. Epub 2019 Apr 12.
4
5
Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration.
J Exp Bot. 2015 Feb;66(3):989-99. doi: 10.1093/jxb/eru458. Epub 2014 Nov 26.

引用本文的文献

1
Superoxide Dismutases in Immune Regulation and Infectious Diseases.
Antioxidants (Basel). 2025 Jun 30;14(7):809. doi: 10.3390/antiox14070809.
3
Mitochondrial Peroxiredoxin Promotes Infectivity in Macrophages and Attenuates Nifurtimox Toxicity.
Front Cell Infect Microbiol. 2022 Feb 4;12:749476. doi: 10.3389/fcimb.2022.749476. eCollection 2022.
4
Oxidative stress implications for therapeutic vaccine development against Chagas disease.
Expert Rev Vaccines. 2021 Nov;20(11):1395-1406. doi: 10.1080/14760584.2021.1969230. Epub 2021 Aug 30.
5
Mitochondrial Ca and Reactive Oxygen Species in Trypanosomatids.
Antioxid Redox Signal. 2022 May;36(13-15):969-983. doi: 10.1089/ars.2021.0058. Epub 2021 Sep 17.
6
Detection and quantification of nitric oxide-derived oxidants in biological systems.
J Biol Chem. 2019 Oct 4;294(40):14776-14802. doi: 10.1074/jbc.REV119.006136. Epub 2019 Aug 12.
7
Crystal structure of an iron superoxide dismutase from the pathogenic amoeba Acanthamoeba castellanii.
Acta Crystallogr F Struct Biol Commun. 2019 Jul 1;75(Pt 7):480-488. doi: 10.1107/S2053230X19008112. Epub 2019 Jun 26.
8
Cytosolic Fe-superoxide dismutase safeguards from macrophage-derived superoxide radical.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8879-8888. doi: 10.1073/pnas.1821487116. Epub 2019 Apr 12.
9
Reactive species and pathogen antioxidant networks during phagocytosis.
J Exp Med. 2019 Mar 4;216(3):501-516. doi: 10.1084/jem.20181886. Epub 2019 Feb 21.

本文引用的文献

1
Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values.
J Chem Theory Comput. 2011 Jul 12;7(7):2284-95. doi: 10.1021/ct200133y. Epub 2011 Jun 9.
2
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
3
Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite.
Biochim Biophys Acta. 2014 Feb;1840(2):768-80. doi: 10.1016/j.bbagen.2013.07.005. Epub 2013 Jul 18.
4
Peroxynitrite, a stealthy biological oxidant.
J Biol Chem. 2013 Sep 13;288(37):26464-72. doi: 10.1074/jbc.R113.472936. Epub 2013 Jul 16.
5
Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects.
Acc Chem Res. 2013 Feb 19;46(2):550-9. doi: 10.1021/ar300234c. Epub 2012 Nov 16.
6
8
9
Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51).
Adv Parasitol. 2011;75:65-87. doi: 10.1016/B978-0-12-385863-4.00004-6.
10
Data processing and analysis with the autoPROC toolbox.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):293-302. doi: 10.1107/S0907444911007773. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验