Suppr超能文献

原生动物作为导致野油菜黄单胞菌在土壤中数量下降的因素。

Protozoa as agents responsible for the decline of Xanthomonas campestris in soil.

作者信息

Habte M, Alexander M

出版信息

Appl Microbiol. 1975 Feb;29(2):159-64. doi: 10.1128/am.29.2.159-164.1975.

Abstract

A streptomycin-resistant mutant of Xanthomonas campestris was used to assess the persistence of the plant pathogen in soil and the changes in populations that might be important for its survival. In soil into which large numbers of the organism were introduced, a marked decline in its abundance occurred, but after about 1 week its population density reached a level of about 105 and did not continue to fall during the test period. No such marked decline was evident in sterile soil inoculated with X. campestris. The bacterium did not lose viability if starved for carbon or inorganic nitrogen. Although abundant in soil, the numbers of propagules capable of producing antibiotics or lytic enzymes active against X. campestris did not increase coincident with the pathogen's decline, and no increase in tartrate-extractable toxins was observed. Neither bdellovibrios nor bacteriophages active against the xanthomonad were found in the soil, but a marked increase in the frequency of protozoa paralleled the phase of rapid diminution in the X. campestris population. In actidione-treated soil, in which protozoan activity was severly limited, the high cell density of the pathogen was maintained. On the basis of these data, it is concluded that predation by protozoa is responsible for the abrupt fall in frequency of the bacterium in natural soil.

摘要

用野油菜黄单胞菌的链霉素抗性突变体来评估这种植物病原菌在土壤中的存活情况以及对其生存可能具有重要意义的种群变化。在接入大量该微生物的土壤中,其数量显著下降,但大约1周后其种群密度达到约10⁵的水平,并且在测试期间没有继续下降。在接种了野油菜黄单胞菌的无菌土壤中没有明显的这种显著下降。如果缺乏碳源或无机氮,该细菌不会丧失活力。尽管在土壤中数量众多,但能够产生对抗野油菜黄单胞菌的抗生素或裂解酶的繁殖体数量并没有随着病原菌数量的下降而增加,并且未观察到酒石酸盐可提取毒素的增加。在土壤中未发现对该黄单胞菌有活性的蛭弧菌或噬菌体,但原生动物数量的显著增加与野油菜黄单胞菌数量快速减少的阶段平行。在放线菌酮处理的土壤中,原生动物的活动受到严重限制,病原菌的高细胞密度得以维持。基于这些数据,可以得出结论,原生动物的捕食是导致该细菌在天然土壤中数量突然下降的原因。

相似文献

1
Protozoa as agents responsible for the decline of Xanthomonas campestris in soil.
Appl Microbiol. 1975 Feb;29(2):159-64. doi: 10.1128/am.29.2.159-164.1975.
2
Further evidence for the regulation of bacterial populations in soil by protozoa.
Arch Microbiol. 1977 Jun 20;113(3):181-3. doi: 10.1007/BF00492022.
3
Protozoa and the decline of Rhizobium populations added to soil.
Can J Microbiol. 1975 Jun;21(6):884-95. doi: 10.1139/m75-131.
4
Estimating the density of individual bacterial populations introduced into natural ecosytems.
Can J Microbiol. 1973 Nov;19(11):1450-1. doi: 10.1139/m73-234.
5
Alternative prey: a mechanism for elimination of bacterial species by protozoa.
Appl Environ Microbiol. 1983 Nov;46(5):1073-9. doi: 10.1128/aem.46.5.1073-1079.1983.
6
Identification and characteristics of a novel Burkholderia strain with broad-spectrum antimicrobial activity.
Appl Environ Microbiol. 2000 Sep;66(9):4139-41. doi: 10.1128/AEM.66.9.4139-4141.2000.
9
Isolation and characterization of a generalized transducing phage for Xanthomonas campestris pv. campestris.
J Bacteriol. 1994 Jun;176(11):3354-9. doi: 10.1128/jb.176.11.3354-3359.1994.
10
Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri.
Lett Appl Microbiol. 2018 Jul;67(1):64-71. doi: 10.1111/lam.12890. Epub 2018 May 7.

引用本文的文献

1
Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola.
PLoS One. 2018 Aug 24;13(8):e0202941. doi: 10.1371/journal.pone.0202941. eCollection 2018.
2
A stoichiometric organic matter decomposition model in a chemostat culture.
J Math Biol. 2018 Feb;76(3):609-644. doi: 10.1007/s00285-017-1152-3. Epub 2017 Jun 29.
4
A simulation model for the effect of predation on bacteria in continuous culture.
Microb Ecol. 1977 Dec;3(4):259-78. doi: 10.1007/BF02010735.
6
Protozoan grazing of bacteria in soil-impact and importance.
Microb Ecol. 1981 Dec;7(4):343-50. doi: 10.1007/BF02341429.
7
Impact of protists on the activity and structure of the bacterial community in a rice field soil.
Appl Environ Microbiol. 2006 Aug;72(8):5436-44. doi: 10.1128/AEM.00207-06.
8
Effects of Grazing by Flagellates on Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Chemostats.
Appl Environ Microbiol. 1992 Jun;58(6):1962-9. doi: 10.1128/aem.58.6.1962-1969.1992.
10
Effect of Bacteriophage on Colonization of Sugarbeet Roots by Fluorescent Pseudomonas spp.
Appl Environ Microbiol. 1987 May;53(5):1164-7. doi: 10.1128/aem.53.5.1164-1167.1987.

本文引用的文献

1
Bacteriostatic and Bacteriolytic Properties of Actinomycetes.
J Bacteriol. 1942 Nov;44(5):571-88. doi: 10.1128/jb.44.5.571-588.1942.
2
Seasonal Variations in Survival of Indicator Bacteria in Soil and Their Contribution to Storm-water Pollution.
Appl Microbiol. 1967 Nov;15(6):1362-70. doi: 10.1128/am.15.6.1362-1370.1967.
5
A modified technique for isolation of bacteriophage from contaminated materials.
Can J Microbiol. 1959 Jun;5(3):311-2. doi: 10.1139/m59-037.
7
Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria.
J Bacteriol. 1966 May;91(5):2006-17. doi: 10.1128/jb.91.5.2006-2017.1966.
8
A comparison of the lytic action of Cytophaga johnsonii on a eubacterium and a yeast.
Antonie Van Leeuwenhoek. 1967;33(2):159-65. doi: 10.1007/BF02045546.
9
Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes.
J Bacteriol. 1970 Sep;103(3):569-77. doi: 10.1128/jb.103.3.569-577.1970.
10
Estimating the density of individual bacterial populations introduced into natural ecosytems.
Can J Microbiol. 1973 Nov;19(11):1450-1. doi: 10.1139/m73-234.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验