Suppr超能文献

原核生物血红素生物合成:通往共同必需产物的多种途径。

Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.

作者信息

Dailey Harry A, Dailey Tamara A, Gerdes Svetlana, Jahn Dieter, Jahn Martina, O'Brian Mark R, Warren Martin J

机构信息

Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA

Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.

出版信息

Microbiol Mol Biol Rev. 2017 Jan 25;81(1). doi: 10.1128/MMBR.00048-16. Print 2017 Mar.

Abstract

The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.

摘要

在进化过程中,血红素的出现使拥有这种化合物的生物体能够安全、高效地进行各种化学反应,而这些反应在其他情况下则难以进行或无法进行。长期以来,人们一直认为自然界中存在单一的血红素生物合成途径,但在过去十年中,已经明确原核生物中存在三种不同的途径,尽管所有这三种途径都利用三种酶的共同初始核心来产生中间体尿卟啉原III。最古老的途径也是古菌中唯一发现的途径,通过一个不依赖氧气的四步酶促过程将 siro 血红素转化为原血红素。细菌利用初始核心途径,但随后添加一个额外的共同步骤来产生粪卟啉原III。在此步骤之后,革兰氏阳性生物体将粪卟啉原III氧化为粪卟啉III,插入铁以生成粪卟啉,最后将粪卟啉脱羧为原血红素,而革兰氏阴性细菌首先将粪卟啉原III脱羧为原卟啉原IX,然后在金属插入之前将其氧化为原卟啉IX以生成原血红素。为了适应缺氧条件,细菌途径中的两个步骤具有多种形式,以适应厌氧环境中的氧化反应。这些途径的调节反映了细菌代谢的多样性。这种多样性,以及对三种途径存在的较晚认识,显著减缓了该领域的进展,以至于目前没有一种生物体的血红素合成途径调节得到完全表征。

相似文献

1
Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.
Microbiol Mol Biol Rev. 2017 Jan 25;81(1). doi: 10.1128/MMBR.00048-16. Print 2017 Mar.
2
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2210-5. doi: 10.1073/pnas.1416285112. Epub 2015 Feb 2.
4
Heme biosynthesis in prokaryotes.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118861. doi: 10.1016/j.bbamcr.2020.118861. Epub 2020 Sep 23.
5
A primer on heme biosynthesis.
Biol Chem. 2022 Aug 29;403(11-12):985-1003. doi: 10.1515/hsz-2022-0205. Print 2022 Nov 25.
10
HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria.
Arch Biochem Biophys. 2015 May 15;574:27-35. doi: 10.1016/j.abb.2015.02.017. Epub 2015 Feb 21.

引用本文的文献

1
Bioenergetics evolution: the link between Earth's and Life's history.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 7;380(1931):20240102. doi: 10.1098/rstb.2024.0102.
2
Comprehensive analysis of the microbial consortium in the culture of flagellate Monocercomonoides exilis.
Environ Microbiome. 2025 Jul 29;20(1):97. doi: 10.1186/s40793-025-00758-7.
5
Iron-based microbial interactions: the role of iron metabolism in the cheese ecosystem.
J Bacteriol. 2025 May 22;207(5):e0053924. doi: 10.1128/jb.00539-24. Epub 2025 Apr 16.
6
Photodynamic Inactivation Mediated by Endogenous Porphyrins of in Planktonic and Biofilm Forms.
ACS Omega. 2025 Feb 27;10(9):9177-9186. doi: 10.1021/acsomega.4c09308. eCollection 2025 Mar 11.
7
Modelling the effects of temperature, pH and osmotic shifts on the autofluorescence of in vitro.
Future Microbiol. 2025 Apr;20(5):409-418. doi: 10.1080/17460913.2025.2476875. Epub 2025 Mar 11.
8
The NmpRSTU multi-component signaling system of regulates expression of an oxygen utilization regulon.
J Bacteriol. 2025 Feb 20;207(2):e0028024. doi: 10.1128/jb.00280-24. Epub 2025 Jan 27.
10
Manipulating Intracellular Oxidative Conditions to Enhance Porphyrin Production in .
Bioengineering (Basel). 2025 Jan 17;12(1):83. doi: 10.3390/bioengineering12010083.

本文引用的文献

1
Radical new paradigm for heme degradation in Escherichia coli O157:H7.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12138-12143. doi: 10.1073/pnas.1603209113. Epub 2016 Oct 10.
2
Photosynthesis.
Essays Biochem. 2016 Oct 31;60(3):255-273. doi: 10.1042/EBC20160016.
6
Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees.
Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5. doi: 10.1093/nar/gkw290. Epub 2016 Apr 19.
8
Structural basis for gene regulation by a B12-dependent photoreceptor.
Nature. 2015 Oct 22;526(7574):536-41. doi: 10.1038/nature14950. Epub 2015 Sep 28.
9
Identification of the Mitochondrial Heme Metabolism Complex.
PLoS One. 2015 Aug 19;10(8):e0135896. doi: 10.1371/journal.pone.0135896. eCollection 2015.
10
Perception and Homeostatic Control of Iron in the Rhizobia and Related Bacteria.
Annu Rev Microbiol. 2015;69:229-45. doi: 10.1146/annurev-micro-091014-104432. Epub 2015 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验