Suppr超能文献

人源SWI-SNF重塑核小体阵列的稳定性

Stability of a human SWI-SNF remodeled nucleosomal array.

作者信息

Guyon J R, Narlikar G J, Sullivan E K, Kingston R E

机构信息

Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

出版信息

Mol Cell Biol. 2001 Feb;21(4):1132-44. doi: 10.1128/MCB.21.4.1132-1144.2001.

Abstract

SWI-SNF alters DNA-histone interactions within a nucleosome in an ATP-dependent manner. These alterations cause changes in the topology of a closed circular nucleosomal array that persist after removal of ATP from the reaction. We demonstrate here that a remodeled closed circular array will revert toward its original topology when ATP is removed, indicating that the remodeled array has a higher energy than that of the starting state. However, reversion occurs with a half-life measured in hours, implying a high energy barrier between the remodeled and standard states. The addition of competitor DNA accelerates reversion of the remodeled array by more than 10-fold, and we interpret this result to mean that binding of human SWI-SNF (hSWI-SNF), even in the absence of ATP hydrolysis, stabilizes the remodeled state. In addition, we also show that SWI-SNF is able to remodel a closed circular array in the absence of topoisomerase I, demonstrating that hSWI-SNF can induce topological changes even when conditions are highly energetically unfavorable. We conclude that the remodeled state is less stable than the standard state but that the remodeled state is kinetically trapped by the high activation energy barrier separating it from the unremodeled conformation.

摘要

SWI-SNF以ATP依赖的方式改变核小体内的DNA-组蛋白相互作用。这些改变导致闭合环状核小体阵列的拓扑结构发生变化,且在反应体系中去除ATP后这些变化依然存在。我们在此证明,当去除ATP时,重塑的闭合环状阵列会恢复到其原始拓扑结构,这表明重塑后的阵列比起始状态具有更高的能量。然而,恢复过程的半衰期以小时计,这意味着重塑状态和标准状态之间存在较高的能量屏障。加入竞争DNA可使重塑阵列的恢复速度加快10倍以上,我们将这一结果解释为,即使在没有ATP水解的情况下,人源SWI-SNF(hSWI-SNF)的结合也能稳定重塑状态。此外,我们还表明,在没有拓扑异构酶I的情况下,SWI-SNF能够重塑闭合环状阵列,这表明即使在能量高度不利的条件下,hSWI-SNF也能诱导拓扑变化。我们得出结论,重塑状态比标准状态更不稳定,但重塑状态在动力学上被将其与未重塑构象分开的高活化能屏障所捕获。

相似文献

1
Stability of a human SWI-SNF remodeled nucleosomal array.
Mol Cell Biol. 2001 Feb;21(4):1132-44. doi: 10.1128/MCB.21.4.1132-1144.2001.
2
3
Stable remodeling of tailless nucleosomes by the human SWI-SNF complex.
Mol Cell Biol. 1999 Mar;19(3):2088-97. doi: 10.1128/MCB.19.3.2088.
4
Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases.
Mol Cell Biol. 2000 Sep;20(17):6380-9. doi: 10.1128/MCB.20.17.6380-6389.2000.
5
Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state.
Cell. 1998 Jul 10;94(1):17-27. doi: 10.1016/s0092-8674(00)81217-9.
9
hSWI/SNF disrupts interactions between the H2A N-terminal tail and nucleosomal DNA.
Biochemistry. 1999 Jun 29;38(26):8423-9. doi: 10.1021/bi990090o.
10
Analysis of individual remodeled nucleosomes reveals decreased histone-DNA contacts created by hSWI/SNF.
Nucleic Acids Res. 2009 Sep;37(16):5279-94. doi: 10.1093/nar/gkp524. Epub 2009 Jun 30.

引用本文的文献

1
Collaboration through chromatin: motors of transcription and chromatin structure.
J Mol Biol. 2021 Jul 9;433(14):166876. doi: 10.1016/j.jmb.2021.166876. Epub 2021 Feb 5.
2
3
Mechanisms of ATP-Dependent Chromatin Remodeling Motors.
Annu Rev Biophys. 2016 Jul 5;45:153-81. doi: 10.1146/annurev-biophys-051013-022819.
5
Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler.
Nucleic Acids Res. 2013 Feb 1;41(3):1637-48. doi: 10.1093/nar/gks1440. Epub 2012 Dec 28.
6
Mechanism(s) of SWI/SNF-induced nucleosome mobilization.
Chembiochem. 2011 Jan 24;12(2):196-204. doi: 10.1002/cbic.201000455. Epub 2010 Oct 28.
7
Human SWI/SNF drives sequence-directed repositioning of nucleosomes on C-myc promoter DNA minicircles.
Biochemistry. 2007 Oct 9;46(40):11377-88. doi: 10.1021/bi7008823. Epub 2007 Sep 18.
8
Human SWI/SNF generates abundant, structurally altered dinucleosomes on polynucleosomal templates.
Mol Cell Biol. 2005 Dec;25(24):11156-70. doi: 10.1128/MCB.25.24.11156-11170.2005.
9
Using atomic force microscopy to study nucleosome remodeling on individual nucleosomal arrays in situ.
Biophys J. 2004 Sep;87(3):1964-71. doi: 10.1529/biophysj.104.042606.
10
High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2.
Mol Cell Biol. 2002 Nov;22(21):7524-34. doi: 10.1128/MCB.22.21.7524-7534.2002.

本文引用的文献

1
Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases.
Mol Cell Biol. 2000 Sep;20(17):6380-9. doi: 10.1128/MCB.20.17.6380-6389.2000.
2
3
Purification and characterization of a human factor that assembles and remodels chromatin.
J Biol Chem. 2000 May 19;275(20):14787-90. doi: 10.1074/jbc.C000093200.
5
ATP-dependent chromatin-remodeling complexes.
Mol Cell Biol. 2000 Mar;20(6):1899-910. doi: 10.1128/MCB.20.6.1899-1910.2000.
7
ATP-dependent remodeling and acetylation as regulators of chromatin fluidity.
Genes Dev. 1999 Sep 15;13(18):2339-52. doi: 10.1101/gad.13.18.2339.
8
Nucleosome mobilization catalysed by the yeast SWI/SNF complex.
Nature. 1999 Aug 19;400(6746):784-7. doi: 10.1038/23506.
9
Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase.
EMBO J. 1999 Jul 1;18(13):3712-23. doi: 10.1093/emboj/18.13.3712.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验