Logie C, Tse C, Hansen J C, Peterson C L
Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester 01605, USA.
Biochemistry. 1999 Feb 23;38(8):2514-22. doi: 10.1021/bi982109d.
SWI/SNF and RSC are large, distinct multi-subunit complexes that use the energy of ATP hydrolysis to disrupt nucleosome structure, facilitating the binding of transcription factors or restriction enzymes to nucleosomes [Cote, J., Quinn, J., Workman, J. L., and Peterson, C. L. (1994) Science 265, 53-60 (1); Lorch, Y., Cairns, B. R., Zhang, M., and Kornberg, R. D. (1998) Cell 94, 29-34 (2)]. Here we have used a quantitative assay to measure the activities of these ATP-dependent chromatin remodeling complexes using nucleosomal arrays reconstituted with hypoacetylated, hyperacetylated, or partially trypsinized histones. This assay is based on measuring the kinetics of restriction enzyme digestion of a site located within the central nucleosome of a positioned 11-mer array [Logie, C., and Peterson, C. L. (1997) EMBO J. 16, 6772-6782 (3)]. We find that the DNA-stimulated ATPase activities of SWI/SNF and RSC are not altered by the absence of the histone N-termini. Furthermore, ATP-dependent nucleosome remodeling is also equivalent on all three substrate arrays under reaction conditions where the concentrations of nucleosomal array and either SWI/SNF or RSC are equivalent. However, SWI/SNF and RSC cannot catalytically remodel multiple nucleosomal arrays in the absence of the histone termini, and this catalytic activity of SWI/SNF is decreased by histone hyperacetylation. These results indicate that the histone termini are important for SWI/SNF and RSC function; and, furthermore, our data defines a step in the remodeling cycle where the core histone termini exert their influence. This step appears to be after remodeling, but prior to intermolecular transfer of the remodelers to new arrays.
SWI/SNF和RSC是大型的、不同的多亚基复合物,它们利用ATP水解的能量破坏核小体结构,促进转录因子或限制酶与核小体的结合[科特,J.,奎因,J.,沃克曼,J. L.,和彼得森,C. L.(1994年)《科学》265卷,53 - 60页(1);洛尔希,Y.,凯恩斯,B. R.,张,M.,和科恩伯格,R. D.(1998年)《细胞》94卷,29 - 34页(2)]。在这里,我们使用了一种定量分析方法,通过用低乙酰化、高乙酰化或部分胰蛋白酶处理的组蛋白重构的核小体阵列来测量这些依赖ATP的染色质重塑复合物的活性。该分析基于测量位于定位的11聚体阵列中央核小体内一个位点的限制酶消化动力学[洛吉,C.,和彼得森,C. L.(1997年)《欧洲分子生物学组织杂志》16卷,6772 - 6782页(3)]。我们发现,组蛋白N端缺失不会改变SWI/SNF和RSC的DNA刺激的ATP酶活性。此外,在核小体阵列与SWI/SNF或RSC浓度相等的反应条件下,ATP依赖的核小体重塑在所有三种底物阵列上也是等效的。然而,在没有组蛋白末端的情况下,SWI/SNF和RSC不能催化重塑多个核小体阵列,并且组蛋白高乙酰化会降低SWI/SNF的这种催化活性。这些结果表明组蛋白末端对SWI/SNF和RSC的功能很重要;此外,我们的数据定义了重塑循环中的一个步骤,在这个步骤中核心组蛋白末端发挥其影响。这个步骤似乎是在重塑之后,但在重塑因子向新阵列的分子间转移之前。