Suppr超能文献

组蛋白八聚体核心的扭曲促进染色质重塑因子介导的核小体移动。

Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler.

作者信息

Sinha Kalyan K, Gross John D, Narlikar Geeta J

机构信息

Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.

Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA.

出版信息

Science. 2017 Jan 20;355(6322). doi: 10.1126/science.aaa3761.

Abstract

Adenosine 5'-triphosphate (ATP)-dependent chromatin remodeling enzymes play essential biological roles by mobilizing nucleosomal DNA. Yet, how DNA is mobilized despite the steric constraints placed by the histone octamer remains unknown. Using methyl transverse relaxation-optimized nuclear magnetic resonance spectroscopy on a 450-kilodalton complex, we show that the chromatin remodeler, SNF2h, distorts the histone octamer. Binding of SNF2h in an activated ATP state changes the dynamics of buried histone residues. Preventing octamer distortion by site-specific disulfide linkages inhibits nucleosome sliding by SNF2h while promoting octamer eviction by the SWI-SNF complex, RSC. Our findings indicate that the histone core of a nucleosome is more plastic than previously imagined and that octamer deformation plays different roles based on the type of chromatin remodeler. Octamer plasticity may contribute to chromatin regulation beyond ATP-dependent remodeling.

摘要

三磷酸腺苷(ATP)依赖的染色质重塑酶通过移动核小体DNA发挥重要的生物学作用。然而,尽管受到组蛋白八聚体空间位阻的限制,DNA是如何被移动的仍然未知。通过对一个450千道尔顿的复合物进行甲基横向弛豫优化核磁共振光谱分析,我们发现染色质重塑因子SNF2h会扭曲组蛋白八聚体。处于激活的ATP状态时,SNF2h的结合会改变埋藏的组蛋白残基的动力学。通过位点特异性二硫键连接阻止八聚体扭曲会抑制SNF2h介导的核小体滑动,同时促进SWI-SNF复合物RSC介导的八聚体驱逐。我们的研究结果表明,核小体的组蛋白核心比之前想象的更具可塑性,并且八聚体变形根据染色质重塑因子的类型发挥不同作用。八聚体可塑性可能有助于除ATP依赖的重塑之外的染色质调控。

相似文献

1
2
A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler.
Mol Cell. 2015 Mar 5;57(5):850-859. doi: 10.1016/j.molcel.2015.01.008. Epub 2015 Feb 12.
3
Histone octamer transfer by a chromatin-remodeling complex.
Cell. 1999 Feb 5;96(3):389-92. doi: 10.1016/s0092-8674(00)80551-6.
5
Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.
Mol Cell Biol. 2015 Dec;35(23):4083-92. doi: 10.1128/MCB.00441-15. Epub 2015 Sep 28.
6
Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome.
Nat Struct Mol Biol. 2006 Apr;13(4):339-46. doi: 10.1038/nsmb1071. Epub 2006 Mar 5.
7
Mechanism of chromatin remodeling.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3458-62. doi: 10.1073/pnas.1000398107. Epub 2010 Feb 8.
8
A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing.
Nat Chem Biol. 2020 Feb;16(2):134-142. doi: 10.1038/s41589-019-0413-4. Epub 2019 Dec 9.
9
Architecture of the SWI/SNF-nucleosome complex.
Mol Cell Biol. 2008 Oct;28(19):6010-21. doi: 10.1128/MCB.00693-08. Epub 2008 Jul 21.
10

引用本文的文献

1
Mechanisms of chromatin remodeling by the human Snf2-type ATPase SNF2H.
Cell Res. 2025 Apr 3. doi: 10.1038/s41422-025-01103-w.
2
Pervasive and programmed nucleosome distortion patterns on single mammalian chromatin fibers.
bioRxiv. 2025 Jan 22:2025.01.17.633622. doi: 10.1101/2025.01.17.633622.
3
Mechanisms of chromatin remodeling by an Snf2-type ATPase.
bioRxiv. 2025 Jan 2:2024.12.31.630910. doi: 10.1101/2024.12.31.630910.
4
The role of high mobility group proteins in cellular senescence mechanisms.
Front Aging. 2024 Oct 23;5:1486281. doi: 10.3389/fragi.2024.1486281. eCollection 2024.
5
The chromatin remodeler SMARCA5 binds to d-block metal supports: Characterization of affinities by IMAC chromatography and QM analysis.
PLoS One. 2024 Oct 7;19(10):e0309134. doi: 10.1371/journal.pone.0309134. eCollection 2024.
6
Structural dynamics in chromatin unraveling by pioneer transcription factors.
Biophys Rev. 2024 Jul 4;16(3):365-382. doi: 10.1007/s12551-024-01205-6. eCollection 2024 Jun.
7
Cysteine hyperoxidation rewires communication pathways in the nucleosome and destabilizes the dyad.
Comput Struct Biotechnol J. 2024 Apr 3;23:1387-1396. doi: 10.1016/j.csbj.2024.03.025. eCollection 2024 Dec.
9
Real-Time Multistep Asymmetrical Disassembly of Nucleosomes and Chromatosomes Visualized by High-Speed Atomic Force Microscopy.
ACS Cent Sci. 2023 Dec 22;10(1):122-137. doi: 10.1021/acscentsci.3c00735. eCollection 2024 Jan 24.
10
Energy-driven genome regulation by ATP-dependent chromatin remodellers.
Nat Rev Mol Cell Biol. 2024 Apr;25(4):309-332. doi: 10.1038/s41580-023-00683-y. Epub 2023 Dec 11.

本文引用的文献

1
Mechanisms of ATP-Dependent Chromatin Remodeling Motors.
Annu Rev Biophys. 2016 Jul 5;45:153-81. doi: 10.1146/annurev-biophys-051013-022819.
3
Stepwise nucleosome translocation by RSC remodeling complexes.
Elife. 2016 Feb 19;5:e10051. doi: 10.7554/eLife.10051.
4
The prenucleosome, a stable conformational isomer of the nucleosome.
Genes Dev. 2015 Dec 15;29(24):2563-75. doi: 10.1101/gad.272633.115.
5
Histone core phosphorylation regulates DNA accessibility.
J Biol Chem. 2015 Sep 11;290(37):22612-21. doi: 10.1074/jbc.M115.661363. Epub 2015 Jul 13.
6
Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere.
Science. 2015 May 8;348(6235):699-703. doi: 10.1126/science.1259308.
7
A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler.
Mol Cell. 2015 Mar 5;57(5):850-859. doi: 10.1016/j.molcel.2015.01.008. Epub 2015 Feb 12.
8
SWR1 and INO80 chromatin remodelers contribute to DNA double-strand break perinuclear anchorage site choice.
Mol Cell. 2014 Aug 21;55(4):626-39. doi: 10.1016/j.molcel.2014.06.027. Epub 2014 Jul 24.
9
Bringing dynamic molecular machines into focus by methyl-TROSY NMR.
Annu Rev Biochem. 2014;83:291-315. doi: 10.1146/annurev-biochem-060713-035829.
10
The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme.
J Mol Biol. 2014 May 15;426(10):2034-44. doi: 10.1016/j.jmb.2014.02.021. Epub 2014 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验