Suppr超能文献

The use of chitosan gels as matrices for electrically-modulated drug delivery.

作者信息

Ramanathan S, Block L H

机构信息

Department of Pharmaceutics, College of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

J Control Release. 2001 Jan 29;70(1-2):109-23. doi: 10.1016/s0168-3659(00)00333-3.

Abstract

This study evaluated and characterized the use of chitosan gels as matrices for electrically modulated drug delivery. Chitosan gels were prepared by acetylation of chitosan and subsequently hydrated to facilitate further studies. After determining the degree of deacetylation, hydrated and unhydrated gel formulations were characterized for their microviscosity and compression strength. In the electrification studies, gel mass variation, surface pH changes, and later, release-time profiles for neutral (hydrocortisone), anionic (benzoic acid), and cationic (lidocaine hydrochloride) drug molecules from hydrated chitosan gels were monitored in response to different milliamperages of current as a function of time. Hydrated gels had very similar microviscosity while exhibiting differences in the gel strength, results which are not inconsistent as they pertain to different aspects of the gel. The cumulative gel mass loss and rate of gel mass loss increased with an increase in the milliamperage (mA) of the applied current. Gel syneresis - principally involving electroosmosis and gel collapse - was pronounced, particularly at higher mAs and for chitosan gels with lower degrees of acetylation. The surface pH values of the gels were lower at the anode and higher at the cathode, in accordance with reports in the literature. The release of the model drugs from the gel matrix was in the order benzoic acid>hydrocortisone>lidocaine, which is consistent with the electrokinetically competing forces that are involved in these gels. Adequate characterization of electrical effects on formulation matrices, such as chitosan gels, is critical to the development of effective and reliable electrically modulated drug delivery systems.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验