Suppr超能文献

蛋白质组合文库的统计理论。堆积相互作用、主链柔性以及主链结构的序列变异性。

Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure.

作者信息

Kono H, Saven J G

机构信息

Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

J Mol Biol. 2001 Feb 23;306(3):607-28. doi: 10.1006/jmbi.2000.4422.

Abstract

Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.

摘要

组合实验为探究蛋白质折叠的决定因素以及识别新的折叠氨基酸序列提供了新方法。然而,这类实验因巨大的构象复杂性和大量可能的序列而变得复杂。因此,一种定量计算理论将有助于设计和解释这类实验。在此,我们提出并应用一种基于统计的计算方法来识别与给定主链结构兼容的序列特性。蛋白质侧链构象以基于原子的方式包含在内。针对各种相似的主链结构进行计算,以识别相对于主链结构微小变化具有稳健性的序列特性。该方法并非产生特定序列,而是得出给定蛋白质结构中预选位置上每个氨基酸的可能性。该理论可用于量化所选结构的序列空间特征,而无需明确列出序列。为了考虑疏水效应,我们引入了一种与其他简单疏水性标度一致的环境能量,并表明它对侧链建模有效。我们应用该方法计算蛋白质L免疫球蛋白轻链结合结构域所选位置的同一性概率,对于该结构域有许多可变折叠序列可用。计算结果与实验观察到的同一性概率相比表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验