Suppr超能文献

精神分裂症患者脑区之间功能连接模式的神经网络分析

Neural network analysis of the pattern of functional connectivity between cerebral areas in schizophrenia.

作者信息

Josin G M, Liddle P F

机构信息

Department of Psychiatry, University of British Columbia, Vancouver, Canada.

出版信息

Biol Cybern. 2001 Feb;84(2):117-22. doi: 10.1007/s004220000197.

Abstract

Recent evidence suggests that the core abnormality of cerebral function in schizophrenia is a disruption of functional connectivity between diverse cerebral sites. Functional connectivity is defined as the correlation between neuronal activity at remote sites. It can be measured using functional imaging techniques such as positron emission tomography (PET). This paper reports an analysis using a neural network to discriminate between the patterns of functional connectivity in schizophrenic patients and healthy subjects. The data was derived from a PET study of regional cerebral blood flow during word generation in 6 healthy subjects and 16 schizophrenic patients with established illness, in whom the clinical diagnosis could be made with confidence. After training on data from two healthy subjects and seven schizophrenic patients, the neural network successfully assigned all members of a test set of four healthy subjects and nine schizophrenic patients to the correct diagnostic category. While this result should be interpreted with caution on account of the small sample size, it indicates that neural network analysis is potentially of value in the diagnosis of schizophrenia.

摘要

近期证据表明,精神分裂症患者大脑功能的核心异常在于不同脑区之间功能连接的中断。功能连接被定义为远处位点神经元活动之间的相关性。它可以使用正电子发射断层扫描(PET)等功能成像技术来测量。本文报告了一项使用神经网络来区分精神分裂症患者和健康受试者功能连接模式的分析。数据源自一项针对6名健康受试者和16名确诊患有精神疾病的精神分裂症患者在单词生成过程中局部脑血流的PET研究,这些患者的临床诊断是可靠的。在对两名健康受试者和七名精神分裂症患者的数据进行训练后,神经网络成功地将一组由四名健康受试者和九名精神分裂症患者组成的测试集的所有成员正确分类到相应的诊断类别中。尽管由于样本量小,这一结果应谨慎解读,但它表明神经网络分析在精神分裂症的诊断中可能具有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验