Suppr超能文献

基于静息态功能网络连接的精神分裂症患者分类。

Classification of schizophrenia patients based on resting-state functional network connectivity.

机构信息

The Mind Research Network Albuquerque, NM, USA ; Department of ECE, University of New Mexico Albuquerque, NM, USA.

出版信息

Front Neurosci. 2013 Jul 30;7:133. doi: 10.3389/fnins.2013.00133. eCollection 2013.

Abstract

There is a growing interest in automatic classification of mental disorders based on neuroimaging data. Small training data sets (subjects) and very large amount of high dimensional data make it a challenging task to design robust and accurate classifiers for heterogeneous disorders such as schizophrenia. Most previous studies considered structural MRI, diffusion tensor imaging and task-based fMRI for this purpose. However, resting-state data has been rarely used in discrimination of schizophrenia patients from healthy controls. Resting data are of great interest, since they are relatively easy to collect, and not confounded by behavioral performance on a task. Several linear and non-linear classification methods were trained using a training dataset and evaluate with a separate testing dataset. Results show that classification with high accuracy is achievable using simple non-linear discriminative methods such as k-nearest neighbors (KNNs) which is very promising. We compare and report detailed results of each classifier as well as statistical analysis and evaluation of each single feature. To our knowledge our effects represent the first use of resting-state functional network connectivity (FNC) features to classify schizophrenia.

摘要

基于神经影像学数据对精神障碍进行自动分类越来越受到关注。小的训练数据集(被试)和非常大量的高维数据使得为精神分裂症等异质障碍设计稳健和准确的分类器成为一项具有挑战性的任务。大多数先前的研究都考虑了结构磁共振成像、弥散张量成像和任务型功能磁共振成像来实现这一目的。然而,静息态数据在区分精神分裂症患者和健康对照者方面很少被使用。静息数据非常有趣,因为它们相对容易收集,并且不受任务行为表现的干扰。使用训练数据集训练了几种线性和非线性分类方法,并使用单独的测试数据集进行评估。结果表明,使用简单的非线性判别方法(如 k-最近邻(KNN))可以实现高精度的分类,这非常有前景。我们比较并报告了每个分类器的详细结果,以及每个单一特征的统计分析和评估。据我们所知,我们的效果代表了首次使用静息态功能网络连接(FNC)特征来对精神分裂症进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e994/3744823/68ef19f36a9a/fnins-07-00133-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验