Suppr超能文献

Seasonal changes in thermotropic behavior of phosphatidylcholine and phosphatidylethanolamine in different organs of the ascidian Halocynthia aurantium.

作者信息

Sanina N M, Kostetsky E Y

机构信息

Department of Biochemistry and Biotechnology, Far Eastern State University, 690600, Vladivostok, Russia.

出版信息

Comp Biochem Physiol B Biochem Mol Biol. 2001 Feb;128(2):295-305. doi: 10.1016/s1096-4959(00)00328-6.

Abstract

Differential scanning calorimetry and polarising microscopy were used to investigate the crystal-liquid crystal-isotropic melt phase transitions of phosphatidylcholine (PC), and phosphatidylethanolamine (PE), isolated from muscles, gill pouches, gonads and digestive glands of Halocynthia aurantium, collected in summer and winter. We also analyzed the fatty chain composition of these phospholipids. In summer, the crystalline to liquid crystalline phase transitions of PC and PE from different organs were more co-operative than in winter. Their peak maximum temperatures were close and temperature ranges overlapped for summer samples. Peak maximum temperatures of winter samples decreased sharply, by 18-27 degrees C for PC and by 10-44 degrees C for PE, respectively, depending on the organ. Total heat changes of transitions also decreased. Thermograms were completely located at temperatures below -1.7 degrees C (minimal temperature of seawater in winter). In contrast to summer samples, peak maximum temperatures for PC and PE in winter differed significantly, (by 14-30 degrees C depending on organ), while the temperature ranges of their transitions still showed considerable overlap. Simultaneously, the temperature ranges of the liquid crystalline to isotropic phase transitions decreased. The main reason for changes in thermotropic behavior of phospholipids seems to be the decrease of saturated/unsaturated ratios. The existence of stable and thermoadaptative labile phospholipid pools in the membrane structure is proposed. The relationship of these transitions to low- and high-temperature adaptation is discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验