Stoodley P, Lewandowski Z, Boyle J D, Lappin-Scott H M
Exeter University, School of Biology, Hatherly Laboratories, UK.
Environ Microbiol. 1999 Oct;1(5):447-55. doi: 10.1046/j.1462-2920.1999.00055.x.
Mixed-species biofilms, consisting of Klebsiella pneumoniae, Pseudomonas aeruginosa, Pseudomonas fluorescens and Stenotrophomonas maltophilia, were grown in glass flow cells under either laminar or turbulent flow. The biofilms grown in laminar flow consisted of roughly circular-shaped microcolonies separated by water channels. In contrast, biofilm microcolonies grown in turbulent flow were elongated in the downstream direction, forming filamentous 'streamers'. Moreover, biofilms growing in turbulent flow developed extensive patches of ripple-like structures between 9 and 13 days of growth. Using time-lapse microscopic imaging, we discovered that the biofilm ripples migrated downstream. The morphology and the migration velocity of the ripples varied with short-term changes in the bulk liquid flow velocity. The ripples had a maximum migration velocity of 800 micromh(-1) (2.2 x 10(-7) m s(-1)) when the liquid flow velocity was 0.5 ms(-1) (Reynolds number=1,800). This work challenges the commonly held assumption that biofilm structures remain at the same location on a surface until they eventually detach.
由肺炎克雷伯菌、铜绿假单胞菌、荧光假单胞菌和嗜麦芽窄食单胞菌组成的混合物种生物膜,在层流或湍流条件下于玻璃流动池中生长。在层流中生长的生物膜由大致圆形的微菌落组成,这些微菌落被水通道隔开。相比之下,在湍流中生长的生物膜微菌落在下游方向上拉长,形成丝状的“飘带”。此外,在湍流中生长的生物膜在生长9至13天之间形成了广泛的波纹状结构斑块。通过延时显微镜成像,我们发现生物膜波纹向下游迁移。波纹的形态和迁移速度随主体液体流速的短期变化而变化。当液体流速为0.5米/秒(雷诺数 = 1800)时,波纹的最大迁移速度为800微米/小时(2.2×10⁻⁷米/秒)。这项工作挑战了人们普遍持有的假设,即生物膜结构在表面上保持在同一位置,直到它们最终脱落。