Suppr超能文献

来自微微型浮游生物的海洋18S核糖体DNA序列揭示了意想不到的真核生物多样性。

Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity.

作者信息

Moon-van der Staay S Y, De Wachter R, Vaulot D

机构信息

Station Biologique, UPR 9042 Centre National de la Recherche Scientifique et Université Pierre et Marie Curie, Roscoff, France.

出版信息

Nature. 2001 Feb 1;409(6820):607-10. doi: 10.1038/35054541.

Abstract

Picoplankton--cells with a diameter of less than 3 microm--are the dominant contributors to both primary production and biomass in open oceanic regions. However, compared with the prokaryotes, the eukaryotic component of picoplankton is still poorly known. Recent discoveries of new eukaryotic algal taxa based on picoplankton cultures suggest the existence of many undiscovered taxa. Conventional approaches based on phenotypic criteria have limitations in depicting picoplankton composition due to their tiny size and lack of distinctive taxonomic characters. Here we analyse, using an approach that has been very successful for prokaryotes but has so far seldom been applied to eukaryotes, 35 full sequences of the small-subunit (18S) ribosomal RNA gene derived from a picoplanktonic assemblage collected at a depth of 75 m in the equatorial Pacific Ocean, and show that there is a high diversity of picoeukaryotes. Most of the sequences were previously unknown but could still be assigned to important marine phyla including prasinophytes, haptophytes, dinoflagellates, stramenopiles, choanoflagellates and acantharians. We also found a novel lineage, closely related to dinoflagellates and not previously described.

摘要

微微型浮游生物(直径小于3微米的细胞)是公海区域初级生产力和生物量的主要贡献者。然而,与原核生物相比,微微型浮游生物中的真核生物成分仍然鲜为人知。基于微微型浮游生物培养的新真核藻类分类群的最新发现表明存在许多未被发现的分类群。由于其微小的尺寸和缺乏独特的分类特征,基于表型标准的传统方法在描述微微型浮游生物组成方面存在局限性。在这里,我们使用一种对原核生物非常成功但迄今为止很少应用于真核生物的方法,分析了从赤道太平洋75米深处采集的微微型浮游生物组合中获得的35个小亚基(18S)核糖体RNA基因的完整序列,并表明微微型真核生物具有高度的多样性。大多数序列以前是未知的,但仍可归入重要的海洋门类,包括绿藻、定鞭藻、甲藻、不等鞭毛藻、领鞭毛虫和棘胞动物。我们还发现了一个与甲藻密切相关且以前未被描述的新谱系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验