Henckel T, Roslev P, Conrad R
Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany.
Environ Microbiol. 2000 Dec;2(6):666-79. doi: 10.1046/j.1462-2920.2000.00149.x.
The activity and distribution of methanotrophs in soil depend on the availability of CH4 and O2. Therefore, we investigated the activity and structure of the methanotrophic community in rice field soil under four factorial combinations of high and low CH4 and O2 concentrations. The methanotrophic population structure was resolved by denaturant gradient gel electrophoresis (DGGE) with different PCR primer sets targeting the 16S rRNA gene, and two functional genes coding for key enzymes in methanotrophs, i.e. the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Changes in the biomass of type I and II methanotrophic bacteria in the rice soil were determined by analysis of phospholipid-ester-linked fatty acid (PLFA) biomarkers. The relative contribution of type I and II methanotrophs to the measured methane oxidation activity was determined by labelling of soil samples with 14CH4 followed by analysis of [14C]-PLFAs. CH4 oxidation was repressed by high O2 (20.5%), and enhanced by low O2 (1%). Depending on the CH4 and O2 mixing ratios, different methanotrophic communities developed with a higher diversity at low than at high CH4 concentration as revealed by PCR-DGGE. However, a prevalence of type I or II populations was not detected. The [14C]-PLFA fingerprints, on the other hand, revealed that CH4 oxidation activity was dominated by type I methanotrophs in incubations with low CH4 mixing ratios (1000 p.p.m.v.) and during initiation of CH4 consumption regardless of O2 or CH4 mixing ratio. At high methane mixing ratios (10 000 p.p.m.v.), type I and II methanotrophs contributed equally to the measured CH4 metabolism. Collectively, type I methanotrophs responded fast and with pronounced shifts in population structure and dominated the activity under all four gas mixtures. Type II methanotrophs, on the other hand, although apparently more abundant, always present and showing a largely stable population structure, became active later and contributed to CH4 oxidation activity mainly under high CH4 mixing ratios.
土壤中甲烷氧化菌的活性和分布取决于甲烷(CH₄)和氧气(O₂)的可利用性。因此,我们研究了在高、低CH₄和O₂浓度的四种因子组合下稻田土壤中甲烷氧化菌群落的活性和结构。通过变性梯度凝胶电泳(DGGE),使用针对16S rRNA基因的不同PCR引物组以及编码甲烷氧化菌关键酶的两个功能基因,即颗粒性甲烷单加氧酶(pmoA)和甲醇脱氢酶(mxaF),解析了甲烷氧化菌的种群结构。通过分析磷脂 - 酯连接脂肪酸(PLFA)生物标志物,确定了稻田土壤中I型和II型甲烷氧化菌生物量的变化。通过用¹⁴CH₄标记土壤样品,随后分析[¹⁴C]-PLFAs,确定了I型和II型甲烷氧化菌对测得的甲烷氧化活性的相对贡献。高O₂(20.5%)会抑制CH₄氧化,低O₂(1%)则会增强CH₄氧化。PCR-DGGE结果显示,根据CH₄和O₂的混合比例,会形成不同的甲烷氧化菌群落,低CH₄浓度下的群落多样性高于高CH₄浓度下的。然而,未检测到I型或II型种群占优势的情况。另一方面,[¹⁴C]-PLFA指纹图谱显示,在低CH₄混合比例(1000 ppmv)的培养中以及CH₄消耗开始时,无论O₂或CH₄混合比例如何,CH₄氧化活性均以I型甲烷氧化菌为主导。在高甲烷混合比例(10000 ppmv)下,I型和II型甲烷氧化菌对测得的CH₄代谢贡献相等。总体而言,I型甲烷氧化菌反应迅速,种群结构有明显变化,并且在所有四种气体混合物条件下的活性均占主导。另一方面,II型甲烷氧化菌虽然明显更为丰富,始终存在且种群结构基本稳定,但后期才变得活跃,主要在高CH₄混合比例下对CH₄氧化活性有贡献。