Suppr超能文献

通过靶向16S rRNA、颗粒性甲烷单加氧酶和甲醇脱氢酶的基因对稻田土壤中甲烷氧化微生物群落进行分子分析。

Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase.

作者信息

Henckel T, Friedrich M, Conrad R

机构信息

Max-Planck-Institut fur terrestrische Mikrobiologie, D-35043 Marburg, Germany.

出版信息

Appl Environ Microbiol. 1999 May;65(5):1980-90. doi: 10.1128/AEM.65.5.1980-1990.1999.

Abstract

Rice field soil with a nonsaturated water content induced CH4 consumption activity when it was supplemented with 5% CH4. After a lag phase of 3 days, CH4 was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH4 mixing ratios (i.e., 5 ppmv). The soil microbial community was monitored by performing denaturing gradient gel electrophoresis (DGGE) during the oxidation process with different PCR primer sets based on the 16S rRNA gene and on functional genes. A universal small-subunit (SSU) ribosomal DNA (rDNA) primer set and 16S rDNA primer sets specifically targeting type I methylotrophs (members of the gamma subdivision of the class Proteobacteria [gamma-Proteobacteria]) and type II methylotrophs (members of the alpha-Proteobacteria) were used. Functional PCR primers targeted the genes for particulate methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF), which code for key enzymes in the catabolism of all methanotrophs. The yield of PCR products amplified from DNA in soil that oxidized CH4 was the same as the yield of PCR products amplified from control soil when the universal SSU rDNA primer set was used but was significantly greater when primer sets specific for methanotrophs were used. The DGGE patterns and the sequences of major DGGE bands obtained with the universal SSU rDNA primer set showed that the community structure was dominated by nonmethanotrophic populations related to the genera Flavobacterium and Bacillus and was not influenced by CH4. The structure of the methylotroph community as determined with the specific primer sets was less complex; this community consisted of both type I and type II methanotrophs related to the genera Methylobacter, Methylococcus, and Methylocystis. DGGE profiles of PCR products amplified with functional gene primer sets that targeted the mxaF and pmoA genes revealed that there were pronounced community shifts when CH4 oxidation began. High CH4 concentrations stimulated both type I and II methanotrophs in rice field soil with a nonsaturated water content, as determined with both ribosomal and functional gene markers.

摘要

当添加5%的CH₄时,非饱和含水量的稻田土壤表现出CH₄消耗活性。经过3天的滞后期后,CH₄迅速被消耗,直至浓度低于百万分之一体积比(ppmv)1.8。然而,在接近大气CH₄混合比(即5 ppmv)时,土壤无法维持氧化活性。在氧化过程中,基于16S rRNA基因和功能基因,使用不同的PCR引物组,通过变性梯度凝胶电泳(DGGE)对土壤微生物群落进行监测。使用了通用的小亚基(SSU)核糖体DNA(rDNA)引物组以及专门针对I型甲基营养菌(变形菌纲γ亚类[γ-变形菌]成员)和II型甲基营养菌(α-变形菌成员)的16S rDNA引物组。功能性PCR引物靶向颗粒甲烷单加氧酶(pmoA)和甲醇脱氢酶(mxaF)的基因,这些基因编码所有甲烷氧化菌分解代谢中的关键酶。当使用通用的SSU rDNA引物组时,从氧化CH₄的土壤DNA中扩增的PCR产物产量与从对照土壤中扩增的PCR产物产量相同,但当使用针对甲烷氧化菌的引物组时,产量显著更高。使用通用的SSU rDNA引物组获得的DGGE图谱和主要DGGE条带的序列表明,群落结构以与黄杆菌属和芽孢杆菌属相关的非甲烷氧化菌种群为主,且不受CH₄影响。用特定引物组确定的甲基营养菌群落结构较不复杂;该群落由与甲基杆菌属、甲基球菌属和甲基孢囊菌属相关的I型和II型甲烷氧化菌组成。用靶向mxaF和pmoA基因的功能基因引物组扩增的PCR产物的DGGE图谱显示,CH₄氧化开始时群落发生了明显变化。核糖体和功能基因标记均表明,高浓度的CH₄刺激了非饱和含水量稻田土壤中的I型和II型甲烷氧化菌。

相似文献

2
Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil.
Environ Microbiol. 2000 Dec;2(6):666-79. doi: 10.1046/j.1462-2920.2000.00149.x.
6
Vertical distribution of the methanotrophic community after drainage of rice field soil.
FEMS Microbiol Ecol. 2001 Jan;34(3):279-291. doi: 10.1111/j.1574-6941.2001.tb00778.x.
8
Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane.
Appl Environ Microbiol. 2000 May;66(5):1801-8. doi: 10.1128/AEM.66.5.1801-1808.2000.
9
High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph.
Appl Environ Microbiol. 1999 Mar;65(3):1009-14. doi: 10.1128/AEM.65.3.1009-1014.1999.

引用本文的文献

1
Unravelling the effects of tropical land use conversion on the soil microbiome.
Environ Microbiome. 2020 Feb 3;15(1):5. doi: 10.1186/s40793-020-0353-3.
3
Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review.
Microbiology (Reading). 2020 Oct;166(10):894-908. doi: 10.1099/mic.0.000977.
4
Exploring the effect of plant substrates on bacterial community structure in termite fungus-combs.
PLoS One. 2020 May 1;15(5):e0232329. doi: 10.1371/journal.pone.0232329. eCollection 2020.
5
Manure amendment increased the abundance of methanogens and methanotrophs but suppressed the type I methanotrophs in rice paddies.
Environ Sci Pollut Res Int. 2020 Mar;27(8):8016-8027. doi: 10.1007/s11356-019-07464-1. Epub 2019 Dec 31.
6
Erythritol as a single carbon source improves cultural isolation of Burkholderia pseudomallei from rice paddy soils.
PLoS Negl Trop Dis. 2019 Oct 21;13(10):e0007821. doi: 10.1371/journal.pntd.0007821. eCollection 2019 Oct.
7
How Rainforest Conversion to Agricultural Systems in Sumatra (Indonesia) Affects Active Soil Bacterial Communities.
Front Microbiol. 2018 Oct 10;9:2381. doi: 10.3389/fmicb.2018.02381. eCollection 2018.
9
An efficient strategy using mers to analyse 16S rRNA sequences.
Heliyon. 2017 Jul 27;3(7):e00370. doi: 10.1016/j.heliyon.2017.e00370. eCollection 2017 Jul.
10
How conserved are the conserved 16S-rRNA regions?
PeerJ. 2017 Feb 28;5:e3036. doi: 10.7717/peerj.3036. eCollection 2017.

本文引用的文献

1
Activity and species composition of aerobic methanotrophic communities in tundra soils.
Curr Microbiol. 1993 Sep;27(3):181-4. doi: 10.1007/BF01576018.
2
Activity and Distribution of Methane-Oxidizing Bacteria in Flooded Rice Soil Microcosms and in Rice Plants (Oryza sativa).
Appl Environ Microbiol. 1997 Apr;63(4):1199-207. doi: 10.1128/aem.63.4.1199-1207.1997.
3
Survival and Recovery of Methanotrophic Bacteria Starved under Oxic and Anoxic Conditions.
Appl Environ Microbiol. 1994 Jul;60(7):2602-8. doi: 10.1128/aem.60.7.2602-2608.1994.
5
Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.
Science. 1998 Oct 9;282(5387):281-4. doi: 10.1126/science.282.5387.281.
6
Microbial community changes in a perturbed agricultural soil investigated by molecular and physiological approaches.
Appl Environ Microbiol. 1998 Jul;64(7):2739-42. doi: 10.1128/AEM.64.7.2739-2742.1998.
8
The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs.
FEMS Microbiol Lett. 1997 Nov 15;156(2):205-10. doi: 10.1111/j.1574-6968.1997.tb12728.x.
10
The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs.
Appl Environ Microbiol. 1997 Aug;63(8):3218-24. doi: 10.1128/aem.63.8.3218-3224.1997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验