Suppr超能文献

人类癌症中的线粒体基因组不稳定性

Mitochondrial genome instability in human cancers.

作者信息

Bianchi N O, Bianchi M S, Richard S M

机构信息

Instituto Multidisciplinario de Biología Celular (IMBICE), CC 403, 1900, La Plata, Argentina.

出版信息

Mutat Res. 2001 Mar;488(1):9-23. doi: 10.1016/s1383-5742(00)00063-6.

Abstract

Malfunction of mismatch repair (MMR) genes produces nuclear genome instability (NGI) and plays an important role in the origin of some hereditary and sporadic human cancers. The appearance of non-inherited microsatellite alleles in tumor cells (microsatellite instability, MSI) is one of the expressions of NGI. We present here data showing mitochondrial genome instability (mtGI) in most of the human cancers analyzed so far. The mtDNA markers used were point mutations, length-tract instability of mono- or dinucleotide repeats, mono- or dinucleotide insertions or deletions, and long deletions. Comparison of normal and tumoral tissues from the same individual reveals that mt-mutations may show as homoplasmic (all tumor cells have the same variant haplotype) or as heteroplasmic (tumor cells are a mosaic of inherited and acquired variant haplotypes). Breast, colorectal, gastric and kidney cancers exhibit mtGI with a pattern of mt-mutations specific for each tumor. No correlation between NGI and mtGI was found in breast, colorectal or kidney cancers, while a positive correlation was found in gastric cancer. Conversely, germ cell testicular cancers lack mtGI. Damage by reactive oxygen species (ROS), slipped-strand mispairing (SSM) and deficient repair are the causes explaining the appearance of mtGI. The replication and repair of mtDNA are controlled by nuclear genes. So far, there is no clear evidence linking MMR gene malfunction with mtGI. Polymerase gamma (POLgamma) carries out the mtDNA synthesis. Since this process is error-prone due to a deficiency in the proofreading activity of POLgamma, this enzyme has been assumed to be involved in the origin of mt-mutations. Somatic cells have hundreds to thousands of mtDNA molecules with a very high rate of spontaneous mutations. Accordingly, most somatic cells probably have a low frequency of randomly mutated mtDNA molecules. Most cancers are of monoclonal origin. Hence, to explain the appearance of mtGI in tumors we have to explain why a given variant mt-haplotype expands and replaces part of (heteroplasmy) or all (homoplasmy) wild mt-haplotypes in cancer cells. Selective and/or replicative advantage of some mutations combined with a severe bottleneck during the mitochondrial segregation accompanying mitosis are the mechanisms probably involved in the origin of mtGI.

摘要

错配修复(MMR)基因功能异常会导致核基因组不稳定(NGI),并在一些遗传性和散发性人类癌症的发生中起重要作用。肿瘤细胞中出现非遗传性微卫星等位基因(微卫星不稳定,MSI)是NGI的表现之一。我们在此展示的数据表明,在目前分析的大多数人类癌症中存在线粒体基因组不稳定(mtGI)。所使用的线粒体DNA标记包括点突变、单核苷酸或二核苷酸重复序列的长度片段不稳定、单核苷酸或二核苷酸插入或缺失以及长片段缺失。对同一个体的正常组织和肿瘤组织进行比较发现,线粒体突变可能表现为同质性(所有肿瘤细胞具有相同的变异单倍型)或异质性(肿瘤细胞是遗传和获得性变异单倍型的嵌合体)。乳腺癌、结直肠癌、胃癌和肾癌表现出mtGI,且每种肿瘤都有特定的线粒体突变模式。在乳腺癌、结直肠癌或肾癌中未发现NGI与mtGI之间存在相关性,而在胃癌中发现了正相关。相反,生殖细胞睾丸癌不存在mtGI。活性氧(ROS)损伤、滑链错配(SSM)和修复缺陷是解释mtGI出现的原因。线粒体DNA的复制和修复由核基因控制。到目前为止,尚无明确证据表明MMR基因功能异常与mtGI有关。聚合酶γ(POLγ)负责线粒体DNA的合成。由于该过程因POLγ校对活性不足而容易出错,因此推测该酶参与了线粒体突变的发生。体细胞有成百上千个线粒体DNA分子,自发突变率很高。因此,大多数体细胞可能具有低频随机突变的线粒体DNA分子。大多数癌症起源于单克隆。因此,为了解释肿瘤中mtGI的出现,我们必须解释为什么特定的变异线粒体单倍型会在癌细胞中扩增并取代部分(异质性)或全部(同质性)野生型线粒体单倍型。一些突变的选择性和/或复制优势,以及有丝分裂期间线粒体分离过程中的严重瓶颈,可能是mtGI发生的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验