Suppr超能文献

阿尔茨海默病中氧化应激的代谢、金属和有丝分裂来源。

Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease.

作者信息

Smith M A, Nunomura A, Zhu X, Takeda A, Perry G

机构信息

Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Antioxid Redox Signal. 2000 Fall;2(3):413-20. doi: 10.1089/15230860050192198.

Abstract

Cell bodies of neurons at risk of death in Alzheimer disease (AD) have increased lipid peroxidation, nitration, free carbonyls, and nucleic acid oxidation. These oxidative changes are uniform among neurons and are seen whether or not the neurons display neurofibrillary tangles and, in fact, are actually reduced in the latter case. In consideration of this localization of damage, in this review, we provide a summary of recent work demonstrating some key abnormalities that may initiate and promote neuronal oxidative damage. First, mitochondrial abnormalities might be the source of reactive oxygen species yielding perikaryal oxidative damage. The common 5-kb deletion mitochondrial (mt)DNA subtype was greatly increased in the AD cases, but only in neurons at risk. The importance of such mitochondrial abnormalities to oxidative stress was indicated by a high correlation coefficient between the extent of the mtDNA increase and RNA oxidative damage (r2 = 0.87). Nonetheless, because mitochondria in AD do not show striking oxidative damage, as one would expect if they were the direct producer of free radical species, we suspected that abnormal mitochondria supply a key reactant that, once in the cytoplasm, releases radicals. One such reactant, hydrogen peroxide, (H2O2), abundant in mitochondria, can react with iron via the Fenton reaction to produce.OH. To demonstrate this directly using a modified cytochemical technique that relies on the formation of mixed valence iron complexes, we found that redox-active iron is associated with vulnerable neurons. Interestingly, removal of iron was completely affected by using deferroxamine, after which iron could be rebound to re-establish lesion-dependent catalytic redox reactivity. Characterization of the iron-binding site suggests that binding is dependent on available histidine residues and on protein conformation. Taken together with our previous studies showing abnormalities in the iron homeostatic system including heme oxygenase, iron regulatory proteins 1 and 2, ceruloplasmin, and dimethylargininase, our results indicate that iron misregulation could play an important role in the pathogenesis of AD and therefore chelation therapy may be a useful therapeutic approach. Finally, we wanted to determine the proximal cause of mitochondrial abnormalities. One interesting mechanisms involves re-entry into the cell cycle, at which point organellokinesis and proliferation results in increased mitochondria. Supporting this, we have considerable in vivo and in vitro evidence for mitotic disturbances in AD and its relationship with the pathogenesis of AD.

摘要

阿尔茨海默病(AD)中面临死亡风险的神经元细胞体存在脂质过氧化、硝化、游离羰基和核酸氧化增加的情况。这些氧化变化在神经元中是一致的,无论神经元是否显示神经原纤维缠结,实际上在后一种情况下这些变化反而减少。考虑到这种损伤的定位,在本综述中,我们总结了近期的研究工作,这些工作证明了一些可能引发和促进神经元氧化损伤的关键异常情况。首先,线粒体异常可能是产生核周氧化损伤的活性氧的来源。常见的5千碱基缺失线粒体(mt)DNA亚型在AD病例中大幅增加,但仅在有风险的神经元中增加。mtDNA增加程度与RNA氧化损伤之间的高相关系数(r2 = 0.87)表明了这种线粒体异常对氧化应激的重要性。然而,由于AD中的线粒体并未显示出明显的氧化损伤,而如果它们是自由基的直接产生者人们会预期出现这种损伤,所以我们怀疑异常线粒体提供了一种关键反应物,一旦进入细胞质就会释放自由基。一种这样的反应物,过氧化氢(H2O2),在线粒体中大量存在,它可以通过芬顿反应与铁反应生成·OH。为了使用依赖于混合价铁络合物形成的改良细胞化学技术直接证明这一点,我们发现氧化还原活性铁与易损神经元相关。有趣的是,使用去铁胺完全消除了铁,之后铁可以重新结合以重新建立依赖损伤的催化氧化还原反应性。铁结合位点的特征表明结合依赖于可用的组氨酸残基和蛋白质构象。结合我们之前关于包括血红素加氧酶、铁调节蛋白1和2、铜蓝蛋白以及二甲基精氨酸酶在内的铁稳态系统异常的研究,我们的结果表明铁调节异常可能在AD的发病机制中起重要作用,因此螯合疗法可能是一种有用的治疗方法。最后,我们想确定线粒体异常的近端原因。一个有趣的机制涉及重新进入细胞周期,此时细胞器分裂和增殖会导致线粒体增加。支持这一点的是,我们有大量体内和体外证据表明AD中的有丝分裂紊乱及其与AD发病机制的关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验