Suppr超能文献

Glucose degradation products and the peritoneal mesothelium.

作者信息

Jörres A, Bender T O, Witowski J

机构信息

Department of Nephrology and Medical Intensive Care, Universitätsklinikum Charité, Medizinische Fakultät der Humboldt-Universität zu Berlin, Germany.

出版信息

Perit Dial Int. 2000;20 Suppl 5:S19-22.

Abstract

Conventional heat-sterilized, glucose-based peritoneal dialysis (PD) fluids contain significant amounts of glucose degradation products (GDPs) such as aldehydes and dicarbonyl compounds (glyoxal, methylglyoxal). These GDPs have been shown to impair cell functions in various in vitro experimental models. In peritoneal mesothelial cells, GDPs dose-dependently inhibit cell proliferation and mediator synthesis. In addition, some GDPs potently promote generation of advanced glycation end-products (AGEs). Immunohistochemistry finds AGEs in the peritoneal membrane of chronic continuous ambulatory peritoneal dialysis (CAPD) patients, suggesting that peritoneal AGE accumulation may be involved in chronic peritoneal fibrosis. The formation of GDPs might be prevented by filter-sterilization of PD fluids. Another option is to separate the glucose and the buffer system in dual-chambered or multi-chambered containers. In these systems, the glucose is kept in a separate compartment at high concentration and very low pH-both conditions being known to minimize the degree of glucose decomposition during autoclaving. Initial experimental evidence suggests that these novel, multi-chambered fluids significantly improve in vitro biocompatibility; however, the clinical relevance of these results remains to be established in clinical trials.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验