Suppr超能文献

大鼠新生海马体CA1区谷氨酸能突触处的囊泡释放概率和预引发池

Vesicle release probability and pre-primed pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus.

作者信息

Hanse E, Gustafsson B

机构信息

Institute of Physiology and Pharmacology, Goteborg University, Sweden.

出版信息

J Physiol. 2001 Mar 1;531(Pt 2):481-93. doi: 10.1111/j.1469-7793.2001.0481i.x.

Abstract

Factors determining the release probability were examined using whole-cell patch-clamp recording and minimal stimulation (10 impulses, 50 Hz) of individual glutamatergic synapses, containing single release sites, on pyramidal neurones in the CA1 region of hippocampal slices from neonatal rats. Release probability following the first action potential in the burst (P1) varied among the synapses from 0 to 0.87 (mean +/- s.d.; 0.35 +/- 0.28, n = 52) and the average release during the burst (burst pool) varied from 0.4 to 4.1 events (1.7 +/- 0.85, n = 52). Heterogeneity in P1 did not co-vary with that of the burst pool. By selecting burst trials during which only one release event occurred, the vesicle release probability (Pves) at a release site could be determined. It was found to vary considerably among the synapses, from 0.04 to 0.94 (0.43 +/- 0.28, n = 43). This heterogeneity correlated significantly with that of P1 such that more than half of the variation of P1 could be explained by a variation in Pves. The average number of vesicles directly available for release at the onset of the burst (the pre-primed pool) was estimated as the cumulative release up to that point in the burst where a second release event did not produce higher initial release probability than that found in trials where only one vesicle was released. The average pre-primed pool varied among the synapses from 0.4 to 2.1 (1.03 +/- 0.42, n = 43). It co-varied significantly with that of P1 such that it could explain the remaining variation in P1. The difference between the burst pool and the pre-primed pool suggests the presence of a fast (< 100 ms), activity-dependent priming of vesicles. Some synapses (9/52) did not show any initial release (P1 = 0), but release occurred later during the burst ('low frequency mute synapses'). Their behaviour was explained by an absence of a pre-primed pool.

摘要

采用全细胞膜片钳记录和对新生大鼠海马切片CA1区锥体神经元上含单个释放位点的单个谷氨酸能突触进行最小刺激(10个脉冲,50Hz),研究了决定释放概率的因素。爆发中第一个动作电位后的释放概率(P1)在突触间变化范围为0至0.87(均值±标准差;0.35±0.28,n = 52),爆发期间的平均释放量(爆发池)变化范围为0.4至4.1次事件(1.7±0.85,n = 52)。P1的异质性与爆发池的异质性并不共同变化。通过选择仅发生一次释放事件的爆发试验,可以确定释放位点的囊泡释放概率(Pves)。发现其在突触间差异很大,范围为0.04至0.94(0.43±0.28,n = 43)。这种异质性与P1的异质性显著相关,以至于P1超过一半的变化可以由Pves的变化来解释。爆发开始时可直接用于释放的囊泡平均数量(预引发池)估计为爆发中到第二个释放事件不会产生比仅释放一个囊泡的试验中更高的初始释放概率的那个点的累积释放量。平均预引发池在突触间变化范围为0.4至2.1(1.03±0.42,n = 43)。它与P1的异质性显著共同变化,以至于可以解释P1中剩余的变化。爆发池和预引发池之间的差异表明存在快速(<100ms)的、活动依赖性的囊泡引发。一些突触(9/52)没有显示任何初始释放(P1 = 0),但在爆发后期发生了释放(“低频沉默突触”)。它们的行为可以通过不存在预引发池来解释。

相似文献

1
3
Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus.
J Physiol. 2001 Mar 1;531(Pt 2):467-80. doi: 10.1111/j.1469-7793.2001.0467i.x.
4
Paired-pulse plasticity at the single release site level: an experimental and computational study.
J Neurosci. 2001 Nov 1;21(21):8362-9. doi: 10.1523/JNEUROSCI.21-21-08362.2001.
5
Multivesicular release at developing Schaffer collateral-CA1 synapses: an analytic approach to describe experimental data.
J Neurophysiol. 2006 Jul;96(1):15-26. doi: 10.1152/jn.01202.2005. Epub 2006 Apr 5.
6
Vesicle pool partitioning influences presynaptic diversity and weighting in rat hippocampal synapses.
J Physiol. 2002 Jun 15;541(Pt 3):811-23. doi: 10.1113/jphysiol.2001.013485.
7
Heterogeneity of release probability, facilitation, and depletion at central synapses.
Neuron. 1997 Jun;18(6):995-1008. doi: 10.1016/s0896-6273(00)80338-4.
8
Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus.
J Physiol. 1998 Feb 15;507 ( Pt 1)(Pt 1):219-36. doi: 10.1111/j.1469-7793.1998.219bu.x.
9
Release probability is regulated by the size of the readily releasable vesicle pool at excitatory synapses in hippocampus.
Int J Dev Neurosci. 2002 Jun-Aug;20(3-5):225-36. doi: 10.1016/s0736-5748(02)00015-1.

引用本文的文献

1
α-Synuclein-Assembled Synaptic Vesicle Pools at the Presynaptic Terminal: A Study of α-Synuclein Function Using a Novel Mouse Model.
Acta Histochem Cytochem. 2025 Jun 24;58(3):107-114. doi: 10.1267/ahc.25-00017. Epub 2025 Jun 18.
2
Power-law adaptation in the presynaptic vesicle cycle.
Commun Biol. 2025 Apr 2;8(1):542. doi: 10.1038/s42003-025-07956-6.
3
Different states of synaptic vesicle priming explain target cell type-dependent differences in neurotransmitter release.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2322550121. doi: 10.1073/pnas.2322550121. Epub 2024 Apr 24.
4
Complexin has a dual synaptic function as checkpoint protein in vesicle priming and as a promoter of vesicle fusion.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2320505121. doi: 10.1073/pnas.2320505121. Epub 2024 Apr 3.
5
Fully-primed slowly-recovering vesicles mediate presynaptic LTP at neocortical neurons.
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2305460120. doi: 10.1073/pnas.2305460120. Epub 2023 Oct 19.
6
Morphofunctional changes at the active zone during synaptic vesicle exocytosis.
EMBO Rep. 2023 May 4;24(5):e55719. doi: 10.15252/embr.202255719. Epub 2023 Mar 6.
7
How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway.
Int J Mol Sci. 2022 Dec 31;24(1):708. doi: 10.3390/ijms24010708.
8
Calcium dependence of neurotransmitter release at a high fidelity synapse.
Elife. 2021 Oct 6;10:e70408. doi: 10.7554/eLife.70408.
9
The glutamatergic synapse: a complex machinery for information processing.
Cogn Neurodyn. 2021 Oct;15(5):757-781. doi: 10.1007/s11571-021-09679-w. Epub 2021 May 7.
10
Cholinergic and Noradrenergic Modulation of Corticothalamic Synaptic Input From Layer 6 to the Posteromedial Thalamic Nucleus in the Rat.
Front Neural Circuits. 2021 Apr 26;15:624381. doi: 10.3389/fncir.2021.624381. eCollection 2021.

本文引用的文献

1
Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus.
J Physiol. 2001 Mar 1;531(Pt 2):467-80. doi: 10.1111/j.1469-7793.2001.0467i.x.
2
Transport, capture and exocytosis of single synaptic vesicles at active zones.
Nature. 2000 Aug 24;406(6798):849-54. doi: 10.1038/35022500.
3
Selective depression of low-release probability excitatory synapses by sodium channel blockers.
Neuron. 2000 Jun;26(3):671-82. doi: 10.1016/s0896-6273(00)81203-9.
6
Reversal of synaptic vesicle docking at central synapses.
Nat Neurosci. 1999 Jun;2(6):503-7. doi: 10.1038/9149.
7
Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices.
Neuron. 1999 Jul;23(3):607-15. doi: 10.1016/s0896-6273(00)80812-0.
8
Silent synapses: I can't hear you! Could you please speak aloud?
Nat Neurosci. 1999 Jan;2(1):3-5. doi: 10.1038/4503.
10
Synaptogenesis via dendritic filopodia in developing hippocampal area CA1.
J Neurosci. 1998 Nov 1;18(21):8900-11. doi: 10.1523/JNEUROSCI.18-21-08900.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验