Celedón G, Rodriguez I, España J, Escobar J, Lissi E
Departamento de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile.
Free Radic Res. 2001 Jan;34(1):17-31. doi: 10.1080/10715760100300031.
We have investigated the influence of the free radical initiator characteristics on red blood cell lipid peroxidation, membrane protein modification, and haemoglobin oxidation. 2,2'-Azobis(2-amidinopropane) (AAPH) and 4,4'-azobis(4-cyanovaleric acid) (ACV) were employed as free radical sources. Both azo-compounds are water-soluble, although ACV presents a lowed hydrophilicity, evaluated from octanol/water partition constants. At physiological pH, they are a di-cation and a di-anion, respectively. AAPH and ACV readily oxidise purified oxyhemoglobin in a very efficient free radical-mediated process, particularly for ACV-derived radicals, where nearly one heme moiety was modified per radical introduced into the system, suggesting that negatively charged radicals react preferentially at the heme group. The radicals derived from both azo-compounds lead to different oxidation products. Methemoglobin, hemichromes and choleglobin were produced in AAPH-promoted hemoglobin oxidation, while ACV-derived radicals predominantly form hemichromes, with very low production of choleglobin. Red cell damage was evaluated at the level of hemoglobin and membrane constituents modification, and was expressed in terms of free radical doses. Before the onset of the lytic process, ACV leads to more lipid peroxidation than AAPH, and induces a moderate oxidation of intracellular Hb. This intracellular oxidation is markedly increased if ACV hydrophilicity is decreased by lowering the pH. On the other hand, AAPH-derived radicals are considerable more efficient in promoting protein band 3 modification and cell lysis, without significant intracellular hemoglobin oxidation. These results show that the lytic process is not triggered by lipid peroxidation or hemichrome formation, and suggest that membrane protein modification is the relevant factor leading to red blood cell lysis.
我们研究了自由基引发剂特性对红细胞脂质过氧化、膜蛋白修饰和血红蛋白氧化的影响。使用2,2'-偶氮二(2-脒基丙烷)(AAPH)和4,4'-偶氮二(4-氰基戊酸)(ACV)作为自由基源。两种偶氮化合物均为水溶性,不过根据正辛醇/水分配常数评估,ACV的亲水性较低。在生理pH值下,它们分别为二价阳离子和二价阴离子。AAPH和ACV在非常高效的自由基介导过程中能轻易氧化纯化的氧合血红蛋白,特别是对于ACV衍生的自由基,引入系统的每个自由基几乎能修饰一个血红素部分,这表明带负电荷的自由基优先在血红素基团处发生反应。两种偶氮化合物衍生的自由基会导致不同的氧化产物。在AAPH促进的血红蛋白氧化过程中产生了高铁血红蛋白、半高铁血红素和胆绿蛋白,而ACV衍生的自由基主要形成半高铁血红素,胆绿蛋白的生成量非常低。在血红蛋白和膜成分修饰水平评估红细胞损伤,并以自由基剂量表示。在溶血过程开始之前,ACV比AAPH导致更多的脂质过氧化,并诱导细胞内血红蛋白的适度氧化。如果通过降低pH值降低ACV的亲水性,这种细胞内氧化会显著增加。另一方面,AAPH衍生的自由基在促进蛋白带3修饰和细胞裂解方面效率更高,而细胞内血红蛋白没有明显氧化。这些结果表明,溶血过程不是由脂质过氧化或半高铁血红素形成引发的,提示膜蛋白修饰是导致红细胞裂解的相关因素。