Suppr超能文献

[不同脑功能状态下脑电图近似熵的研究]

[Study of EEG approximate entrophy in different brain functional states].

作者信息

Huang H P, Chen Q T, Zhen A

机构信息

Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou 350001.

出版信息

Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2000 Nov;16(4):321-3.

Abstract

AIM

The approximate entrophy was applied to study EEG in different brain functional states.

METHODS

EEG were recorded in 40 cases healthy volunteers, who are in five functions states (1. resting conscious with eye-close. 2. resting conscious with eye-opened. 3. closed eyes and listening pure tone. 4. staring at picture. 5. closed eyes and counting numbers). ApEn were calculated in these EEG.

RESULTS

The ApEn of frontal was the highest and ApEn of occipital was the lowest in resting conscious with eye-closed. ApEn in every brain area were higher than that in resting conscious with eye-opened. ApEn were changed in different physiological functions. Variation of frontal EEG ApEn value were highest.

CONCLUSIONS

The ApEn may reflect characteristic of EEG non-linear dynamical. It is a stable parameter. The dates of its requirement were fewer. It may be a useful parameter in studying EEG time series.

摘要

目的

应用近似熵研究不同脑功能状态下的脑电图(EEG)。

方法

记录40例健康志愿者在五种功能状态下的EEG,这五种状态分别为:1. 闭眼静息清醒状态。2. 睁眼静息清醒状态。3. 闭眼听纯音状态。4. 注视图片状态。5. 闭眼数数状态。计算这些EEG的近似熵(ApEn)。

结果

闭眼静息清醒状态下,额叶的ApEn最高,枕叶的ApEn最低。每个脑区的ApEn均高于睁眼静息清醒状态下的ApEn。不同生理功能状态下ApEn发生变化。额叶EEG的ApEn值变化最大。

结论

近似熵可能反映EEG非线性动力学特征。它是一个稳定的参数。所需数据较少。它可能是研究EEG时间序列的一个有用参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验