Suppr超能文献

[使用关联维数和近似熵分析睡眠脑电图]

[Analyzing sleep EEG using correlation dimension and approximate entropy].

作者信息

Jiang Zhaohui, Feng Huanqing, Liu Dalu, Wang Tao

机构信息

Institute of BME, University of Science and Technology of China, Hefei 230026, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2005 Aug;22(4):649-53.

Abstract

Correct sleep scoring is the base of sleep studying; nonlinear features of EEG can represent different sleep stages. In this paper, correlation dimension (D2) and approximate entropy (ApEn) of sleep EEG have been calculated. The statistical results reveal that: D2 does not come to be saturated when the embedding dimension increases, but the relative value of D2 can effectively distinguish different sleep stages. ApEn has the advantage of calculating simply, steady result and representing preferably different sleep stages. ApEn and the relative value of D2 reveal, from different point of view, the same rule about EEG (brain) complexity changing, that is, both complexity and its fluctuation are maximal in the subject's awake hour, are decreasing with the deepening of sleep, but the complexity in REM is about the level between S1 and S2.

摘要

正确的睡眠评分是睡眠研究的基础;脑电图(EEG)的非线性特征能够表征不同的睡眠阶段。本文计算了睡眠EEG的关联维数(D2)和近似熵(ApEn)。统计结果表明:当嵌入维数增加时,D2并未达到饱和,但D2的相对值能够有效区分不同的睡眠阶段。ApEn具有计算简单、结果稳定且能较好地表征不同睡眠阶段的优点。ApEn和D2的相对值从不同角度揭示了EEG(大脑)复杂性变化的相同规律,即复杂性及其波动在受试者清醒时最大,随着睡眠加深而降低,但快速眼动(REM)睡眠阶段的复杂性处于S1和S2之间的水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验