Suppr超能文献

果蝇中着丝粒特异性组蛋白Cid的适应性进化。

Adaptive evolution of Cid, a centromere-specific histone in Drosophila.

作者信息

Malik H S, Henikoff S

机构信息

Howard Hughes Medical Institute, Seattle, Washington 98109, USA.

出版信息

Genetics. 2001 Mar;157(3):1293-8. doi: 10.1093/genetics/157.3.1293.

Abstract

Centromeric DNA is generally composed of large blocks of tandem satellite repeats that change rapidly due to loss of old arrays and expansion of new repeat classes. This extreme heterogeneity of centromeric DNA is difficult to reconcile with the conservation of the eukaryotic chromosome segregation machinery. Histone H3-like proteins, including Cid in Drosophila melanogaster, are a unique chromatin component of centromeres. In comparisons between closely related species of Drosophila, we find an excess of replacement changes that have been fixed since the separation of D. melanogaster and D. simulans, suggesting adaptive evolution. The last adaptive changes appear to have occurred recently, as evident from a reduction in polymorphism in the melanogaster lineage. Adaptive evolution has occurred both in the long N-terminal tail as well as in the histone fold of Cid. In the histone fold, the replacement changes have occurred in the region proposed to mediate binding to DNA. We propose that this rapid evolution of Cid is driven by a response to the changing satellite repeats at centromeres. Thus, centromeric H3-like proteins may act as adaptors between evolutionarily labile centromeric DNA and the conserved kinetochore machinery.

摘要

着丝粒DNA通常由串联卫星重复序列的大片段组成,由于旧阵列的丢失和新重复类别的扩增,这些序列变化迅速。着丝粒DNA的这种极端异质性很难与真核染色体分离机制的保守性相协调。包括黑腹果蝇中的Cid在内的组蛋白H3样蛋白是着丝粒独特的染色质成分。在黑腹果蝇的近缘物种之间的比较中,我们发现自黑腹果蝇和拟暗果蝇分离以来,固定的替换变化过多,这表明存在适应性进化。从黑腹果蝇谱系中多态性的减少可以明显看出,最后的适应性变化似乎最近才发生。Cid的长N端尾巴以及组蛋白折叠区都发生了适应性进化。在组蛋白折叠区,替换变化发生在提议介导与DNA结合的区域。我们认为,Cid的这种快速进化是由对着丝粒处不断变化的卫星重复序列的反应驱动的。因此,着丝粒H3样蛋白可能在进化上不稳定的着丝粒DNA和保守的动粒机制之间充当衔接子。

相似文献

1
Adaptive evolution of Cid, a centromere-specific histone in Drosophila.
Genetics. 2001 Mar;157(3):1293-8. doi: 10.1093/genetics/157.3.1293.
2
Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone.
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1449-54. doi: 10.1073/pnas.032664299. Epub 2002 Jan 22.
3
Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species.
Mol Biol Evol. 2017 Jun 1;34(6):1445-1462. doi: 10.1093/molbev/msx091.
4
Heterochromatic deposition of centromeric histone H3-like proteins.
Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):716-21. doi: 10.1073/pnas.97.2.716.
6
Adaptive evolution of the histone fold domain in centromeric histones.
Mol Biol Evol. 2004 Sep;21(9):1712-8. doi: 10.1093/molbev/msh179. Epub 2004 Jun 2.
7
A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeres.
Chromosoma. 2019 Dec;128(4):503-520. doi: 10.1007/s00412-019-00711-x. Epub 2019 Jun 16.
8
Centromere targeting element within the histone fold domain of Cid.
Mol Cell Biol. 2002 Nov;22(21):7553-61. doi: 10.1128/MCB.22.21.7553-7561.2002.
9
Assembly of Drosophila centromeric nucleosomes requires CID dimerization.
Mol Cell. 2012 Jan 27;45(2):263-9. doi: 10.1016/j.molcel.2011.12.010. Epub 2011 Dec 29.
10
Simple and Complex Centromeric Satellites in Sibling Species.
Genetics. 2018 Mar;208(3):977-990. doi: 10.1534/genetics.117.300620. Epub 2018 Jan 5.

引用本文的文献

1
Centromeres drive and take a break.
Chromosome Res. 2025 Aug 4;33(1):17. doi: 10.1007/s10577-025-09777-z.
4
Rapid evolution to preserve a conserved function.
Nat Rev Mol Cell Biol. 2025 Jun;26(6):416. doi: 10.1038/s41580-025-00848-x.
5
Adaptive evolution of CENP-T modulates centromere binding.
Curr Biol. 2025 Mar 10;35(5):1012-1022.e5. doi: 10.1016/j.cub.2025.01.017. Epub 2025 Feb 12.
6
Adaptive protein coevolution preserves telomere integrity.
bioRxiv. 2024 Nov 11:2024.11.11.623029. doi: 10.1101/2024.11.11.623029.
7
Turnover of retroelements and satellite DNA drives centromere reorganization over short evolutionary timescales in Drosophila.
PLoS Biol. 2024 Nov 21;22(11):e3002911. doi: 10.1371/journal.pbio.3002911. eCollection 2024 Nov.
8
Driving lessons: a brief (personal) history of centromere drive.
Genetics. 2022 Nov 30;222(4). doi: 10.1093/genetics/iyac155.
9
Molecular evolution of the mammalian kinetochore complex.
bioRxiv. 2024 Jun 27:2024.06.27.600994. doi: 10.1101/2024.06.27.600994.
10
KNL1 and NDC80 represent new universal markers for the detection of functional centromeres in plants.
Chromosome Res. 2024 Feb 26;32(1):3. doi: 10.1007/s10577-024-09747-x.

本文引用的文献

1
Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast.
Science. 2000 Jun 23;288(5474):2215-9. doi: 10.1126/science.288.5474.2215.
3
Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro.
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7266-71. doi: 10.1073/pnas.130189697.
4
A distal heterochromatic block displays centromeric activity when detached from a natural centromere.
Mol Cell. 1999 Dec;4(6):995-1004. doi: 10.1016/s1097-2765(00)80228-2.
5
Genetic definition and sequence analysis of Arabidopsis centromeres.
Science. 1999 Dec 24;286(5449):2468-74. doi: 10.1126/science.286.5449.2468.
9
DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis.
Bioinformatics. 1999 Feb;15(2):174-5. doi: 10.1093/bioinformatics/15.2.174.
10
Assay of centromere function using a human artificial chromosome.
Chromosoma. 1998 Dec;107(6-7):406-16. doi: 10.1007/s004120050324.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验