Hutson S M, Lieth E, LaNoue K F
Wake Forest University School of Medicine, Department of Biochemistry, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
J Nutr. 2001 Mar;131(3):846S-850S. doi: 10.1093/jn/131.3.846S.
A novel hypothesis for the role of branched-chain amino acids (BCAA) in regulating levels of the major excitatory neurotransmitter glutamate in the central nervous system is described. It is postulated that the branched-chain aminotransferase (BCAT) isoenzymes (mitochondrial BCATm and cytosolic BCATc) are localized in different cell types and operate in series to provide nitrogen for optimal rates of de novo glutamate synthesis. BCAA enter the astrocyte where transamination is catalyzed by BCATm, producing glutamate and branched-chain alpha-keto acids (BCKA). BCKA, which are poorly oxidized in astrocytes, exit and are taken up by neurons. Neuronal BCATc catalyzes transamination of the BCKA with glutamate. The products, BCAA, exit the neuron and return to the astrocyte. The alpha-ketoglutarate product in the neurons may undergo reductive amination to glutamate via neuronal glutamate dehydrogenase. Operation of the shuttle in the proposed direction provides a mechanism for efficient nitrogen transfer between astrocytes and neurons and synthesis of glutamate from astrocyte alpha-ketoglutarate. Evidence in favor of the hypothesis is: 1) The two BCAT isoenzymes appear to be localized separately in the neurons (BCATc) or in the astroglia (BCATm). 2) Inhibition of the shuttle in the direction of glutamate synthesis can be achieved by inhibiting BCATc using the neuroactive drug gabapentin. Although gabapentin does not inhibit BCATm, it does block de novo glutamate synthesis from alpha-ketoglutarate. 3) Conversely, gabapentin stimulates oxidation of glutamate. Inhibition of BCATc may allow BCKA to accumulate in the astroglia, thus facilitating conversion of glutamate to alpha-ketoglutarate.
本文描述了一种关于支链氨基酸(BCAA)在调节中枢神经系统主要兴奋性神经递质谷氨酸水平中作用的新假说。据推测,支链氨基转移酶(BCAT)同工酶(线粒体BCATm和胞质BCATc)定位于不同细胞类型,并串联运作以提供氮,从而实现谷氨酸从头合成的最佳速率。BCAA进入星形胶质细胞,在其中BCATm催化转氨基作用,生成谷氨酸和支链α-酮酸(BCKA)。在星形胶质细胞中氧化能力较差的BCKA离开并被神经元摄取。神经元中的BCATc催化BCKA与谷氨酸的转氨基作用。产物BCAA离开神经元并返回星形胶质细胞。神经元中的α-酮戊二酸产物可能通过神经元谷氨酸脱氢酶进行还原胺化生成谷氨酸。按所提出的方向运行的穿梭机制为星形胶质细胞和神经元之间的有效氮转移以及从星形胶质细胞α-酮戊二酸合成谷氨酸提供了一种机制。支持该假说的证据如下:1)两种BCAT同工酶似乎分别定位于神经元(BCATc)或星形胶质细胞(BCATm)中。2)使用神经活性药物加巴喷丁抑制BCATc可实现对谷氨酸合成方向穿梭机制的抑制。虽然加巴喷丁不抑制BCATm,但它确实会阻断从α-酮戊二酸从头合成谷氨酸。3)相反,加巴喷丁会刺激谷氨酸的氧化。抑制BCATc可能会使BCKA在星形胶质细胞中积累,从而促进谷氨酸向α-酮戊二酸的转化。