LaNoue K F, Berkich D A, Conway M, Barber A J, Hu L Y, Taylor C, Hutson S
Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
J Neurosci Res. 2001 Dec 1;66(5):914-22. doi: 10.1002/jnr.10064.
In this study aminotransferase inhibitors were used to determine the relative importance of different aminotransferases in providing nitrogen for de novo glutamate synthesis in the retina. Aminooxyacetate, which inhibits all aminotransferases, blocked de novo glutamate synthesis from H(14)CO(3)(-) by more than 60%. Inhibition of neuronal cytosolic branched chain amino acid transamination by gabapentin or branched chain amino acid transport by the L-system substrate analog, 2-amino-bicyclo-(2,2,1)-heptane-2-carboxylic acid, lowered total de novo synthesis of glutamate by 30%, suggesting that branched chain amino acids may account for half of the glutamate nitrogen contributed by transamination reactions. L-cycloserine, an inhibitor of alanine aminotransferase, inhibited glutamate synthesis less than 15% when added in the presence of 5 mM pyruvate but 47% in the presence of 0.2 mM pyruvate. Although high levels of pyruvate blunted the inhibitory effectiveness of L-cycloserine, the results indicate that, under physiological conditions, alanine as well as branched chain amino acids are probably the predominant sources of glutamate nitrogen in ex vivo retinas. The L-cycloserine results were also used to evaluate activity of the malate/aspartate shuttle. In this shuttle, cytosolic aspartate (synthesized in mitochondria) generates cytosolic oxaloacetate that oxidizes cytosolic NADH via malate dehydrogenase. Because L-cycloserine inhibits cytosolic but not mitochondrial aspartate aminotransferase, L-cycloserine should prevent the utilization of aspartate but not its generation, thereby increasing levels of (14)C-aspartate. Instead, L-cycloserine caused a significant decline in (14)C-aspartate. The results suggest the possibility that shuttle activity is low in retinal Müller cells. Low malate/aspartate shuttle activity may be the molecular basis for the high rate of aerobic glycolysis in retinal Müller cells.
在本研究中,使用氨基转移酶抑制剂来确定不同氨基转移酶在为视网膜中从头合成谷氨酸提供氮方面的相对重要性。抑制所有氨基转移酶的氨基氧乙酸使从H(14)CO(3)(-)从头合成谷氨酸的过程受阻超过60%。加巴喷丁抑制神经元胞质支链氨基酸转氨基作用,或L-系统底物类似物2-氨基-双环-(2,2,1)-庚烷-2-羧酸抑制支链氨基酸转运,使谷氨酸的总从头合成降低30%,这表明支链氨基酸可能占转氨基反应所贡献的谷氨酸氮的一半。L-环丝氨酸是丙氨酸氨基转移酶的抑制剂,在存在5 mM丙酮酸时添加,其对谷氨酸合成的抑制小于15%,但在存在0.2 mM丙酮酸时为47%。尽管高水平的丙酮酸减弱了L-环丝氨酸的抑制效果,但结果表明,在生理条件下,丙氨酸以及支链氨基酸可能是离体视网膜中谷氨酸氮的主要来源。L-环丝氨酸的结果也用于评估苹果酸/天冬氨酸穿梭的活性。在这个穿梭过程中,胞质天冬氨酸(在线粒体中合成)产生胞质草酰乙酸,后者通过苹果酸脱氢酶氧化胞质NADH。由于L-环丝氨酸抑制胞质而非线粒体天冬氨酸氨基转移酶,L-环丝氨酸应会阻止天冬氨酸的利用但不会阻止其生成,从而增加(14)C-天冬氨酸的水平。相反,L-环丝氨酸导致(14)C-天冬氨酸显著下降。结果提示视网膜Müller细胞中穿梭活性可能较低。低苹果酸/天冬氨酸穿梭活性可能是视网膜Müller细胞中有氧糖酵解速率高的分子基础。