Barrett J
Institute of Biological Sciences, University of Wales, Aberystwyth, Penglais, Ceredigion SY23 3DA, Aberystwyth, UK.
Int J Biochem Cell Biol. 2001 Feb;33(2):105-17. doi: 10.1016/s1357-2725(00)00083-2.
Extreme environments present a wealth of biochemical adaptations. Thermal hysteresis proteins (THPs) have been found in vertebrates, invertebrates, plants, bacteria and fungi and are able to depress the freezing point of water (in the presence of ice crystals) in a non-colligative manner by binding to the surface of nascent ice crystals. The THPs comprise a disparate group of proteins with a variety of tertiary structures and often no common sequence similarities or structural motifs. Different THPs bind to different faces of the ice crystal, and no single mechanism has been proposed to account for THP ice binding affinity and specificity. Experimentally THPs have been used in the cryopreservation of tissues and cells and to induce cold tolerance in freeze susceptible organisms. THPs represent a remarkable example of parallel and convergent evolution with different proteins being adapted for an anti-freeze role.
极端环境呈现出丰富多样的生化适应性。热滞蛋白(THPs)已在脊椎动物、无脊椎动物、植物、细菌和真菌中被发现,并且能够通过与新生冰晶表面结合,以非依数性方式降低水的冰点(在有冰晶存在的情况下)。热滞蛋白由一组不同的蛋白质组成,具有多种三级结构,通常没有共同的序列相似性或结构基序。不同的热滞蛋白结合到冰晶的不同晶面上,并且尚未提出单一机制来解释热滞蛋白与冰结合的亲和力和特异性。在实验中,热滞蛋白已被用于组织和细胞的冷冻保存,并诱导对冷冻敏感的生物体产生耐寒性。热滞蛋白代表了平行和趋同进化的一个显著例子,不同的蛋白质适应了抗冻作用。