Suppr超能文献

Theoretical model for myocardial trabeculation.

作者信息

Taber L A, Zahalak G I

机构信息

Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA.

出版信息

Dev Dyn. 2001 Mar;220(3):226-37. doi: 10.1002/1097-0177(20010301)220:3<226::AID-DVDY1107>3.0.CO;2-R.

Abstract

During the morphogenetic process of myocardial trabeculation, most of the cardiac jelly of the initially smooth-walled heart is replaced by sponge-like muscle. The mechanisms that drive and regulate this important process are poorly understood. Using a theoretical model, we examined the possible role that cytoskeletal contraction plays during the initial stages of trabeculation. The myocardium is modeled as a thin viscoelastic membrane consisting of contractile (stress) fibers embedded in an isotropic incompressible matrix, with the interaction of myocardial cells and cardiac jelly fibers providing long-range mechanical effects. The stress fibers are assumed to behave like smooth muscle and to normally operate on the descending limb of their stress-stretch curve. Mechanical instability due to the effectively negative stiffness then leads to the creation of pattern. As a first approximation, computations were carried out for a flat rectangular membrane with stress fibers aligned along a single direction. The computed deformation patterns depend strongly on the magnitude and anisotropy of the long-range effects. Given plausible assumptions about the mechanical properties of the embryonic heart, the model predicts trabecular patterns similar to those observed in the embryo, including the development of circumferential ridges and relatively thin regions ("holes") in the trabecular sheets.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验