Suppr超能文献

Expression of bone morphogenetic protein-6 and transforming growth factor-beta1 in the rat brain after a mild and reversible ischemic damage.

作者信息

Martinez G, Carnazza M L, Di Giacomo C, Sorrenti V, Vanella A

机构信息

Department of Anatomy, Diagnostic Pathology, Legal Medicine and Public Health G. Ingrassia 1510-1589 Anatomist, University of Catania, Via Biblioteca 4, 95124, Catania, Italy.

出版信息

Brain Res. 2001 Mar 9;894(1):1-11. doi: 10.1016/s0006-8993(00)03140-1.

Abstract

We have examined the distribution of transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-6 (BMP-6) in the brain of rats subjected to a mild and reversible ischemic damage produced by a 20-min occlusion of both carotid arteries without occlusion of the vertebral arteries. We have selected this model to study how the expression of trophic factor of the TGF-beta superfamily changes in neurons that recover from a transient insult. Immunocytochemical analysis showed a loss of TGF-beta1 in neurons of all hippocampal subfields immediately after the ischemic period, followed by a recovery of immunoreactivity in CA1 and CA3 neurons after reperfusion. BMP-6 immunoreactivity was also lost in most hippocampal neurons, but immunostaining became particularly intense in the interstitial space after both ischemia and reperfusion. An interstitial localization of BMP-6 was also observed in the cerebral cortex, particularly after reperfusion. Mild ischemia also induced substantial changes in the expression of TGF-beta1 and BMP-6 within the cerebellar cortex. In control animals, these factors appeared to be localized in granule cells (TGF-beta1) and Purkinje cells (both), whereas the molecular layer was not immunopositive. Both TGF-beta1 and BMP-6 were highly expressed in the interstitial spaces of the cerebellar cortex either 20 min after ischemia or 20 min after reperfusion. Taken collectively, these results suggest that a mild and reversible ischemia stimulates the release of BMP-6 from neurons into the interstitial space. We speculate that BMP-6, besides functioning during brain development, may also regulate neuronal resistance to insults of the adult brain.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验