Beauloye C, Bertrand L, Krause U, Marsin A S, Dresselaers T, Vanstapel F, Vanoverschelde J L, Hue L
Division of Cardiology, Hormone and Metabolic Research Unit Christian de Duve Institute of Cellular Pathology, Université catholique de Louvain, Brussels, Belgium.
Circ Res. 2001 Mar 16;88(5):513-9. doi: 10.1161/01.res.88.5.513.
Glucose-insulin-potassium solutions exert beneficial effects on the ischemic heart by reducing infarct size and mortality and improving postischemic left ventricular function. Insulin could be the critical protective component of this mixture, although the insulin response of the ischemic and postischemic myocardium has not been systematically investigated. The aim of this work was to study the insulin response during ischemia by analyzing insulin signaling. This was evaluated by measuring changes in activity and/or phosphorylation state of insulin signaling elements in isolated perfused rat hearts submitted to no-flow ischemia. Intracellular pH (pH(i)) was measured by NMR. No-flow ischemia antagonized insulin signaling including insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, protein kinase B, p70 ribosomal S6 kinase, and glycogen synthase kinase-3. These changes were concomitant with intracellular acidosis. Perfusing hearts with ouabain and amiloride in normoxic conditions decreased pH(i) and insulin signaling, whereas perfusing at pH 8.2 counteracted the drop in pH(i) and the inhibition of insulin signaling by ischemia. Incubation of cardiomyocytes in normoxic conditions, but at pH values below 6.75, mimicked the effect of ischemia and also inhibited insulin-stimulated glucose uptake. Finally, the in vitro insulin receptor tyrosine kinase activity was progressively inhibited at pH values below physiological pH(i), being abolished at pH 6.0. Therefore, ischemic acidosis decreases kinase activity and tyrosine phosphorylation of the insulin receptor thereby preventing activation of the downstream components of the signaling pathway. We conclude that severe ischemia inhibits insulin signaling by decreasing pH(i).
葡萄糖 - 胰岛素 - 钾溶液通过减小梗死面积、降低死亡率以及改善缺血后左心室功能,对缺血心脏产生有益作用。胰岛素可能是这种混合物中的关键保护成分,尽管缺血和缺血后心肌的胰岛素反应尚未得到系统研究。这项工作的目的是通过分析胰岛素信号传导来研究缺血期间的胰岛素反应。通过测量在无血流缺血的离体灌注大鼠心脏中胰岛素信号元件的活性和/或磷酸化状态的变化来进行评估。通过核磁共振测量细胞内pH值(pH(i))。无血流缺血拮抗胰岛素信号传导,包括胰岛素受体、胰岛素受体底物 -1、磷脂酰肌醇3 - 激酶、蛋白激酶B、p70核糖体S6激酶和糖原合酶激酶 -3。这些变化与细胞内酸中毒同时发生。在正常氧条件下用哇巴因和阿米洛利灌注心脏会降低pH(i)和胰岛素信号传导,而在pH 8.2灌注可抵消pH(i)的下降以及缺血对胰岛素信号传导的抑制。在正常氧条件下,但在pH值低于6.75的情况下培养心肌细胞,模拟了缺血的作用,并且也抑制了胰岛素刺激的葡萄糖摄取。最后,在低于生理pH(i)的pH值下,体外胰岛素受体酪氨酸激酶活性逐渐受到抑制,在pH 6.0时被消除。因此,缺血性酸中毒降低了胰岛素受体的激酶活性和酪氨酸磷酸化,从而阻止了信号通路下游成分的激活。我们得出结论,严重缺血通过降低pH(i)来抑制胰岛素信号传导。