Suppr超能文献

哺乳动物新皮层缩放的潜在原则。

Principles underlying mammalian neocortical scaling.

作者信息

Changizi M A

机构信息

Biotechnology Group, Schafer Corporation, Arlington, VA 22209, USA.

出版信息

Biol Cybern. 2001 Mar;84(3):207-15. doi: 10.1007/s004220000205.

Abstract

The neocortex undergoes a complex transformation from mouse to whale. Whereas synapse density remains the same, neuron density decreases as a function of gray matter volume to the power of around -1/3, total convoluted surface area increases as a function of gray matter volume to the power of around 8/9, and white matter volume disproportionately increases as a function of gray matter volume to the power of around 4/3. These phylogenetic scaling relationships (including others such as neuron number, neocortex thickness, soma radius, and number of cortical areas) are clues to understanding the principles driving neocortex organization, but there is currently no theory that can explain why these neocortical quantities scale as they do. Here I present a two-part model that explains these neocortical allometric scaling laws. The first part of the model is a special case of the physico-mathematical model recently put forward to explain the quarter power scaling laws in biology. It states that the neocortex is a space-filling neural network through which materials are efficiently transported, and that synapse sizes do not vary as a function of gray matter volume. The second part of the model states that the neocortex is economically organized into functionally specialized areas whose extent of area-interconnectedness does not vary as a function of gray matter volume. The model predicts, among other things, that the number of areas and the soma radius increase as a function of gray matter volume to the power of 1/3 and 1/9, respectively, and empirical support is demonstrated for each. Also, the scaling relationships imply that, although the percentage of the total number of neurons to which a neuron connects falls as a function of gray matter volume with exponent -1/3, the network diameter of the neocortex is invariant at around two. Finally, I discuss how a similar approach may have promise in explaining the scaling relationships for the brain and other organs as a function of body mass.

摘要

新皮层在从小鼠到鲸鱼的进化过程中经历了复杂的转变。虽然突触密度保持不变,但神经元密度随着灰质体积的约 -1/3 次方而降低,总的卷曲表面积随着灰质体积的约 8/9 次方而增加,白质体积随着灰质体积的约 4/3 次方而不成比例地增加。这些系统发育尺度关系(包括其他如神经元数量、新皮层厚度、体细胞半径和皮层区域数量等)是理解驱动新皮层组织的原理的线索,但目前尚无理论能够解释为什么这些新皮层量会以这样的方式缩放。在此,我提出一个由两部分组成的模型来解释这些新皮层异速生长尺度定律。该模型的第一部分是最近提出的用于解释生物学中四分之一次方尺度定律的物理 - 数学模型的一个特例。它指出,新皮层是一个物质能有效传输的空间填充神经网络,并且突触大小不会随着灰质体积而变化。模型的第二部分指出,新皮层在经济上被组织成功能专门化的区域,其区域相互连接的程度不会随着灰质体积而变化。该模型预测,除其他外,区域数量和体细胞半径分别随着灰质体积的 1/3 次方和 1/9 次方而增加,并且分别得到了实证支持。此外,这些尺度关系意味着,尽管一个神经元连接的神经元总数的百分比随着灰质体积以指数 -1/3 下降,但新皮层的网络直径在约为 2 时是不变的。最后,我讨论了一种类似的方法如何可能有望解释大脑和其他器官作为体重函数的尺度关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验