Suppr超能文献

Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus.

作者信息

McSharry B P, Jones C J, Skinner J W, Kipling D, Wilkinson G W G

机构信息

Department of Medicine, Tenovus Building1 and Department of Pathology2, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XX, UK.

出版信息

J Gen Virol. 2001 Apr;82(Pt 4):855-863. doi: 10.1099/0022-1317-82-4-855.

Abstract

MRC-5 cells are a well-characterized human diploid fibroblast cell line approved for vaccine production and favoured for the routine propagation of human cytomegalovirus (HCMV). Ectopic expression of telomerase in fibroblasts is capable of overcoming replicative senescence induced by telomere shortening. Following delivery of the hTERT gene to MRC-5 cells using a retrovirus vector three clones were generated that (i) expressed functional telomerase activity, (ii) exhibited telomere extension and (iii) were sustained for >100 population doublings. Immortalized MRC-5-hTERT and also HCA2-hTERT human fibroblasts were both fully permissive for HCMV as determined by plaque assay, studies of virus growth kinetics and measurement of virus yields. Furthermore, telomerase-immortalized HCA2 cells proved capable of supporting the stable maintenance of an EBV-based episomal vector with efficient transgene expression when driven by the HCMV immediate early promoter. An indicator cell line suitable for the efficient detection of HCMV infection was also generated using an episome containing a reporter gene (lacZ) under the control of the HCMV beta-2.7 early promoter. Telomerase immortalization of human fibroblasts will thus facilitate the growth and detection of HCMV and also the generation of helper cell lines for the propagation of HCMV deletion mutants. Immortalization of fibroblasts by telomerase does not affect cell morphology or growth characteristics. The MRC-5-hTERT clones may therefore be suitable for additional applications in virology, cell biology, vaccine production and biotechnology.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验