Hey T, Lipps G, Krauss G
Lehrstuhl für Biochemie, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.
Biochemistry. 2001 Mar 6;40(9):2901-10. doi: 10.1021/bi002166i.
The proteins XPA and RPA are assumed to be involved in primary damage recognition of global genome nucleotide excision repair. XPA as well as RPA have been each reported to specifically bind DNA lesions, and ternary complex formation with damaged DNA has also been shown. We employed fluorescence anisotropy measurements to study the DNA-binding properties of XPA and RPA under true equilibrium conditions using damaged DNA probes carrying a terminal fluorescein modification as a reporter. XPA binds with low affinity and in a strongly salt-dependent manner to DNA containing a 1,3-d(GTG) intrastrand adduct of the anticancer drug cisplatin or a 6-nt mismatch (K(D) = 400 nM) with 3-fold preference for damaged vs undamaged DNA. At near physiological salt conditions binding is very weak (K(D) > 2 microM). RPA binds to damaged DNA probes with dissociation constants in the range of 20 nM and a nearly 15-fold preference over undamaged DNA. The presence of a cisplatin modification weakens the affinity of RPA for single-stranded DNA by more than 1 order of magnitude indicating that binding to the lesion itself is not a driving force in damage recognition. Our fluorescence anisotropy assays also show that the presence of XPA does not enhance the affinity of RPA for damaged DNA although both proteins interact. In contrast, cooperative binding of XPA and RPA is observed in EMSA. Our results point to a damage-sensing function of the XPA-RPA complex with RPA mediating the important DNA contacts.
蛋白质XPA和RPA被认为参与了全基因组核苷酸切除修复的初级损伤识别过程。据报道,XPA和RPA各自都能特异性结合DNA损伤,并且也已证明它们能与受损DNA形成三元复合物。我们采用荧光各向异性测量法,在真实平衡条件下,使用携带末端荧光素修饰作为报告基团的受损DNA探针,研究XPA和RPA的DNA结合特性。XPA以低亲和力且强烈依赖盐的方式与含有抗癌药物顺铂的1,3-d(GTG)链内加合物或6个核苷酸错配的DNA结合(K(D)=400 nM),对受损DNA与未受损DNA的偏好性为3倍。在接近生理盐浓度条件下,结合非常弱(K(D)>2 microM)。RPA与受损DNA探针结合,解离常数在20 nM范围内,对受损DNA的偏好性比对未受损DNA高近15倍。顺铂修饰的存在使RPA对单链DNA的亲和力降低超过1个数量级,这表明与损伤本身的结合不是损伤识别的驱动力。我们的荧光各向异性分析还表明,尽管两种蛋白质相互作用,但XPA的存在并不会增强RPA对受损DNA的亲和力。相比之下,在电泳迁移率变动分析(EMSA)中观察到XPA和RPA的协同结合。我们的结果表明,XPA-RPA复合物具有损伤传感功能,其中RPA介导重要的DNA接触。