Suppr超能文献

DNA 损伤感应 NER 修复因子 XPC-RAD23B 不能识别缺失核苷酸的碱基对位于损伤部位的大体积 DNA 损伤。

The DNA damage-sensing NER repair factor XPC-RAD23B does not recognize bulky DNA lesions with a missing nucleotide opposite the lesion.

机构信息

Chemistry Department, New York University, 100 Washington East, New York, NY, 10003-5180, USA.

Department of Chemistry & Biochemistry, Baylor University, Waco, TX, 76706, USA.

出版信息

DNA Repair (Amst). 2020 Dec;96:102985. doi: 10.1016/j.dnarep.2020.102985. Epub 2020 Oct 1.

Abstract

The Nucleotide Excision Repair (NER) mechanism removes a wide spectrum of structurally different lesions that critically depend on the binding of the DNA damage sensing NER factor XPC-RAD23B (XPC) to the lesions. The bulky mutagenic benzo[a]pyrene diol epoxide metabolite-derived cis- and trans-B[a]P-dG lesions (G*) adopt base-displaced intercalative (cis) or minor groove (trans) conformations in fully paired DNA duplexes with the canonical C opposite G* (G*:C duplexes). While XPC has a high affinity for binding to these DNA lesions in fully complementary double-stranded DNA, we show here that deleting only the C in the complementary strand opposite the lesion G* embedded in 50-mer duplexes, fully abrogates XPC binding. Accurate values of XPC dissociation constants (K) were determined by employing an excess of unmodified DNA as a competitor; this approach eliminated the binding and accumulation of multiple XPC molecules to the same DNA duplexes, a phenomenon that prevented the accurate estimation of XPC binding affinities in previous studies. Surprisingly, a detailed comparison of XPC dissociation constants K of unmodified and lesion-containing G*:Del complexes, showed that the K values were -2.5-3.6 times greater in the case of G*:Del than in the unmodified G:Del and fully base-paired G:C duplexes. The origins of this unexpected XPC lesion avoidance effect is attributed to the intercalation of the bulky, planar B[a]P aromatic ring system between adjacent DNA bases that thermodynamically stabilize the G*:Del duplexes. The strong lesion-base stacking interactions associated with the absence of the partner base, prevent the DNA structural distortions needed for the binding of the BHD2 and BHD3 β-hairpins of XPC to the deletion duplexes, thus accounting for the loss of XPC binding and the known NER-resistance of G*:Del duplexes.

摘要

核苷酸切除修复(NER)机制可去除结构差异很大的损伤,这些损伤严重依赖于 DNA 损伤感应 NER 因子 XPC-RAD23B(XPC)与损伤的结合。大体积诱变剂苯并[a]芘二醇环氧化物代谢物衍生的顺式和反式-B[a]P-dG 损伤(G*)在完全配对的 DNA 双螺旋中采用碱基置换的插入(顺式)或小沟(反式)构象,与 G对面的经典 C(G:C 双链体)。虽然 XPC 与完全互补双链 DNA 中的这些 DNA 损伤具有高亲和力,但我们在此表明,仅删除嵌入 50 -mer 双链体中的损伤 G对面互补链中的 C,完全消除 XPC 结合。通过使用过量未修饰的 DNA 作为竞争物,确定了 XPC 解离常数(K)的准确值;这种方法消除了多个 XPC 分子与同一 DNA 双链体的结合和积累,这一现象阻止了以前研究中 XPC 结合亲和力的准确估计。令人惊讶的是,对未修饰和含有损伤的 G:Del 复合物的 XPC 解离常数 K 的详细比较表明,在 G*:Del 的情况下,K 值比未修饰的 G:Del 和完全碱基配对的 G:C 双链体高 2.5-3.6 倍。这种意想不到的 XPC 损伤回避效应的起源归因于大体积、平面 B[a]P 芳环系统在相邻 DNA 碱基之间的插入,这从热力学上稳定了 G*:Del 双链体。与缺乏伴侣碱基相关的强烈损伤-碱基堆积相互作用,阻止了 BHD2 和 BHD3 XPC β-发夹结合到缺失双链体所需的 DNA 结构扭曲,从而解释了 XPC 结合的丧失以及已知的 G*:Del 双链体的 NER 抗性。

相似文献

本文引用的文献

6
Repair-Resistant DNA Lesions.抗修复DNA损伤
Chem Res Toxicol. 2017 Aug 21;30(8):1517-1548. doi: 10.1021/acs.chemrestox.7b00128. Epub 2017 Aug 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验