Suppr超能文献

海藻糖对低温下蛋白质动力学的影响:涨落与弛豫现象

Trehalose effect on low temperature protein dynamics: fluctuation and relaxation phenomena.

作者信息

Schlichter J, Friedrich J, Herenyi L, Fidy J

机构信息

Lehrstuhl für Physik Weihenstephan, Technische Universität München, D-85350 Freising, Germany.

出版信息

Biophys J. 2001 Apr;80(4):2011-7. doi: 10.1016/S0006-3495(01)76171-1.

Abstract

We performed spectral diffusion experiments in trehalose-enriched glycerol/buffer-glass on horseradish peroxidase where the heme was replaced by metal-free mesoporphyrin IX, and compared them with the respective behavior in a pure glycerol/buffer-glass (Schlichter et al., J. Chem. Phys. 2000, 112:3045-3050). Trehalose has a significant influence: spectral diffusion broadening speeds up compared to the trehalose-free glass. This speeding up is attributed to a shortening of the correlation time of the frequency fluctuations most probably by preventing water molecules from leaving the protein interior. Superimposed to the frequency fluctuation dynamics is a relaxation dynamics that manifests itself as an aging process in the spectral diffusion broadening. Although the trehalose environment speeds up the fluctuations, it does not have any influence on the relaxation. Both relaxation and fluctuations are governed by power laws in time. The respective exponents do not seem to change with the protein environment. From the spectral dynamics, the mean square displacement in conformation space can be determined. It is governed by anomalous diffusion. The associated frequency correlation time is incredibly long, demonstrating that proteins at low temperatures are truly nonergodic systems.

摘要

我们在富含海藻糖的甘油/缓冲液-玻璃体系中对辣根过氧化物酶进行了光谱扩散实验,其中血红素被无金属的中卟啉IX取代,并将其与纯甘油/缓冲液-玻璃体系中的相应行为进行了比较(施利希特等人,《化学物理杂志》,2000年,112:3045 - 3050)。海藻糖有显著影响:与不含海藻糖的玻璃相比,光谱扩散展宽速度加快。这种加快归因于频率涨落相关时间的缩短,很可能是通过阻止水分子离开蛋白质内部实现的。叠加在频率涨落动力学之上的是一种弛豫动力学,它在光谱扩散展宽中表现为老化过程。尽管海藻糖环境加快了涨落,但对弛豫没有任何影响。弛豫和涨落都由时间幂律支配。各自的指数似乎不会随蛋白质环境而改变。从光谱动力学中,可以确定构象空间中的均方位移。它由反常扩散支配。相关的频率关联时间长得惊人,表明低温下的蛋白质是真正的非遍历系统。

相似文献

1
Trehalose effect on low temperature protein dynamics: fluctuation and relaxation phenomena.
Biophys J. 2001 Apr;80(4):2011-7. doi: 10.1016/S0006-3495(01)76171-1.
2
Infrared absorption study of the heme pocket dynamics of carbonmonoxyheme proteins.
Biophys J. 2006 Dec 1;91(11):4191-200. doi: 10.1529/biophysj.105.068254. Epub 2006 Sep 15.
4
Inertial suppression of protein dynamics in a binary glycerol-trehalose glass.
J Phys Chem B. 2006 Nov 23;110(46):22953-6. doi: 10.1021/jp0615499.
6
How does glycerol enhance the bioprotective properties of trehalose? Insight from protein-solvent dynamics.
J Phys Chem B. 2014 Jul 31;118(30):8928-34. doi: 10.1021/jp500673b. Epub 2014 Jul 16.
8
Optical and IR absorption as probe of dynamics of heme proteins.
Biopolymers. 2002;67(4-5):255-8. doi: 10.1002/bip.10103.
10
Protein and solvent dynamics: how strongly are they coupled?
J Chem Phys. 2004 Jul 22;121(4):1978-83. doi: 10.1063/1.1764491.

引用本文的文献

1
Stabilization of proteins in solid form.
Adv Drug Deliv Rev. 2015 Oct 1;93:14-24. doi: 10.1016/j.addr.2015.05.006. Epub 2015 May 14.
2
Moving boundary problems governed by anomalous diffusion.
Proc Math Phys Eng Sci. 2012 Nov 8;468(2147):3348-3369. doi: 10.1098/rspa.2012.0170. Epub 2012 Jun 20.
3
A molecular dynamics study of DMPC lipid bilayers interacting with dimethylsulfoxide-water mixtures.
J Membr Biol. 2012 Dec;245(12):807-14. doi: 10.1007/s00232-012-9483-x. Epub 2012 Jul 27.
4
GFP-mut2 proteins in trehalose-water matrixes: spatially heterogeneous protein-water-sugar structures.
Biophys J. 2007 Jul 1;93(1):284-93. doi: 10.1529/biophysj.106.090621. Epub 2007 Apr 6.
6
Fast dynamics and stabilization of proteins: binary glasses of trehalose and glycerol.
Biophys J. 2004 Jun;86(6):3836-45. doi: 10.1529/biophysj.103.035519.
7
Molecular probes: what is the range of their interaction with the environment?
Biophys J. 2004 Jan;86(1 Pt 1):467-72. doi: 10.1016/S0006-3495(04)74124-7.
8
Aging dynamics in globular proteins: summary and analysis of experimental results and simulation by a modified trap model.
Eur Biophys J. 2004 Feb;33(1):68-75. doi: 10.1007/s00249-003-0346-3. Epub 2003 Sep 3.

本文引用的文献

1
Cleavage of the haem-protein link by acid methylethylketone.
Biochim Biophys Acta. 1959 Oct;35:543. doi: 10.1016/0006-3002(59)90407-x.
2
The energy landscape in non-biological and biological molecules.
Nat Struct Biol. 1998 Sep;5(9):757-9. doi: 10.1038/1784.
3
The role of vitrification in anhydrobiosis.
Annu Rev Physiol. 1998;60:73-103. doi: 10.1146/annurev.physiol.60.1.73.
4
Crystal structure of horseradish peroxidase C at 2.15 A resolution.
Nat Struct Biol. 1997 Dec;4(12):1032-8. doi: 10.1038/nsb1297-1032.
5
Trehalose prevents myoglobin collapse and preserves its internal mobility.
Biochemistry. 1997 Jun 10;36(23):7097-108. doi: 10.1021/bi9626057.
6
Spectral diffusion and the energy landscape of a protein.
Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15141-5. doi: 10.1073/pnas.93.26.15141.
7
Protein reaction kinetics in a room-temperature glass.
Science. 1995 Aug 18;269(5226):959-62. doi: 10.1126/science.7638618.
8
Complexity in proteins.
Nat Struct Biol. 1995 Oct;2(10):821-3. doi: 10.1038/nsb1095-821.
9
Is vitrification sufficient to preserve liposomes during freeze-drying?
Cryobiology. 1994 Aug;31(4):355-66. doi: 10.1006/cryo.1994.1043.
10
Protein states and proteinquakes.
Proc Natl Acad Sci U S A. 1985 Aug;82(15):5000-4. doi: 10.1073/pnas.82.15.5000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验