Suppr超能文献

由反常扩散控制的移动边界问题。

Moving boundary problems governed by anomalous diffusion.

作者信息

Vogl Christopher J, Miksis Michael J, Davis Stephen H

机构信息

Department of Engineering Sciences and Applied Mathematics , Northwestern University , 2145 Sheridan Road, Evanston, IL 60208-3125, USA.

出版信息

Proc Math Phys Eng Sci. 2012 Nov 8;468(2147):3348-3369. doi: 10.1098/rspa.2012.0170. Epub 2012 Jun 20.

Abstract

Anomalous diffusion can be characterized by a mean-squared displacement 〈x(2)(t)〉 that is proportional to t(α) where α≠1. A class of one-dimensional moving boundary problems is investigated that involves one or more regions governed by anomalous diffusion, specifically subdiffusion (α<1). A novel numerical method is developed to handle the moving interface as well as the singular history kernel of subdiffusion. Two moving boundary problems are solved: the first involves a subdiffusion region to the one side of an interface and a classical diffusion region to the other. The interface will display non-monotone behaviour. The subdiffusion region will always initially advance until a given time, after which it will always recede. The second problem involves subdiffusion regions to both sides of an interface. The interface here also reverses direction after a given time, with the more subdiffusive region initially advancing and then receding.

摘要

反常扩散可以通过均方位移〈x²(t)〉来表征,其与t^α成正比,其中α≠1。研究了一类一维移动边界问题,该问题涉及一个或多个由反常扩散(特别是亚扩散,α<1)控制的区域。开发了一种新颖的数值方法来处理移动界面以及亚扩散的奇异历史核。求解了两个移动边界问题:第一个问题涉及界面一侧的亚扩散区域和另一侧的经典扩散区域。界面将呈现非单调行为。亚扩散区域最初总是会前进,直到给定时间,之后它总是会后退。第二个问题涉及界面两侧的亚扩散区域。这里的界面在给定时间后也会改变方向,亚扩散性更强的区域最初前进然后后退。

相似文献

1
Moving boundary problems governed by anomalous diffusion.由反常扩散控制的移动边界问题。
Proc Math Phys Eng Sci. 2012 Nov 8;468(2147):3348-3369. doi: 10.1098/rspa.2012.0170. Epub 2012 Jun 20.
2
Divergent series and memory of the initial condition in the long-time solution of some anomalous diffusion problems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021105. doi: 10.1103/PhysRevE.81.021105. Epub 2010 Feb 2.
5
Measuring subdiffusion parameters.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 1):041105. doi: 10.1103/PhysRevE.71.041105. Epub 2005 Apr 18.
10
Wanted: a positive control for anomalous subdiffusion.需求:异常次扩散的阳性对照。
Biophys J. 2012 Dec 19;103(12):2411-22. doi: 10.1016/j.bpj.2012.10.038. Epub 2012 Dec 18.

本文引用的文献

3
Reaction-subdiffusion model of morphogen gradient formation.形态发生素梯度形成的反应-亚扩散模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Dec;82(6 Pt 1):061123. doi: 10.1103/PhysRevE.82.061123. Epub 2010 Dec 14.
4
Subdiffusion in a bounded domain with a partially absorbing-reflecting boundary.具有部分吸收 - 反射边界的有界区域中的次扩散
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021128. doi: 10.1103/PhysRevE.81.021128. Epub 2010 Feb 24.
6
The subdiffusive targeting problem.亚扩散靶向问题。
J Phys Chem B. 2008 Apr 10;112(14):4283-9. doi: 10.1021/jp0749017. Epub 2008 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验