Sunami A, Glaaser I W, Fozzard H A
The Cardiac Electrophysiology Laboratories, The University of Chicago, Chicago, Illinois 60637, USA.
Mol Pharmacol. 2001 Apr;59(4):684-91. doi: 10.1124/mol.59.4.684.
Membrane-impermeant quaternary amine local anesthetics QX314 and QX222 can access their binding site on the cytoplasmic side of the selectivity filter from the outside in native cardiac Na(+) channels. Mutation of domain IV S6 Ile-1760 of rat brain IIA Na(+) channel or the equivalent (Ile-1575) in the adult rat skeletal muscle isoform (mu 1) creates an artificial access path for QX. We examined the characteristics of mutation of mu 1-I1575 and the resulting QX path. In addition to allowing external QX222 access, I1575A accelerated decay of Na(+) current and shifted steady-state availability by -27 mV. I1575A had negligible effects on inorganic or organic cation selectivity and block by tetrodotoxin (TTX), saxitoxin (STX), or mu-conotoxin (mu-CTX). It exposed a site within the protein that binds membrane-permeant methanethiosulfonate ethylammonium (MTSEA), but not membrane-impermeant methanethiosulfonate ethyltrimethylammonium (MTSET) and methanethiosulfonate ethylsulfonate (MTSES). MTSEA binding abolished the QX path created by this mutation, without effects on toxin binding. The mu-CTX derivative R13N, which partially occluded the pore, had no effect on QX access. I1575A exposed two Cys residues because a disulfide bond was formed under oxidative conditions, but the exposed Cys residues are not those in domain IV S6, adjacent to Ile-1575. The Cys mutant I1575C was insensitive to external Cd(2+) and MTS compounds (MTSEA, MTSET, MTSES), and substitution of Ile with a negatively charged residue (I1575E) did not affect toxin binding. Ile-1575 seems to be buried in the protein, and its mutation disrupts the protein structure to create the QX path without disturbing the outer vestibule and its selectivity function.
膜不通透性季铵类局部麻醉药QX314和QX222可从外向内进入天然心脏钠通道选择性过滤器胞质侧的结合位点。大鼠脑IIA钠通道结构域IV S6的Ile-1760或成年大鼠骨骼肌亚型(μ1)中的等效位点(Ile-1575)发生突变,为QX创造了一条人工进入途径。我们研究了μ1-I1575突变的特征以及由此产生的QX途径。除了允许外部QX222进入外,I1575A加速了钠电流的衰减,并使稳态可用性向负27 mV偏移。I1575A对无机或有机阳离子选择性以及河豚毒素(TTX)、石房蛤毒素(STX)或μ-芋螺毒素(μ-CTX)的阻断作用可忽略不计。它暴露了蛋白质内一个与膜通透的甲硫基磺酸乙酯铵(MTSEA)结合的位点,但不与膜不通透的甲硫基磺酸乙酯三甲基铵(MTSET)和甲硫基磺酸乙酯磺酸盐(MTSES)结合。MTSEA结合消除了由该突变产生的QX途径,而不影响毒素结合。部分阻塞孔道的μ-CTX衍生物R13N对QX进入没有影响。I1575A暴露了两个半胱氨酸残基,因为在氧化条件下形成了二硫键,但暴露的半胱氨酸残基不是结构域IV S6中与Ile-1575相邻的那些残基。半胱氨酸突变体I1575C对外部Cd(2+)和MTS化合物(MTSEA、MTSET、MTSES)不敏感,用带负电荷的残基(I1575E)取代Ile不影响毒素结合。Ile-1575似乎埋藏在蛋白质中,其突变破坏了蛋白质结构以创建QX途径,而不会干扰外前庭及其选择性功能。