Department of Physiology and Membrane Biology, University of California, Davis, CA 95616.
Biophysics Graduate Group, University of California, Davis, CA 95616.
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2945-2954. doi: 10.1073/pnas.1817446116. Epub 2019 Feb 6.
The human voltage-gated sodium channel, hNa1.5, is responsible for the rapid upstroke of the cardiac action potential and is target for antiarrhythmic therapy. Despite the clinical relevance of hNa1.5-targeting drugs, structure-based molecular mechanisms of promising or problematic drugs have not been investigated at atomic scale to inform drug design. Here, we used Rosetta structural modeling and docking as well as molecular dynamics simulations to study the interactions of antiarrhythmic and local anesthetic drugs with hNa1.5. These calculations revealed several key drug binding sites formed within the pore lumen that can simultaneously accommodate up to two drug molecules. Molecular dynamics simulations identified a hydrophilic access pathway through the intracellular gate and a hydrophobic access pathway through a fenestration between DIII and DIV. Our results advance the understanding of molecular mechanisms of antiarrhythmic and local anesthetic drug interactions with hNa1.5 and will be useful for rational design of novel therapeutics.
人类电压门控钠离子通道 hNa1.5 负责心脏动作电位的快速上升,是抗心律失常治疗的靶点。尽管针对 hNa1.5 的药物具有临床相关性,但在原子尺度上,尚未针对有前途或有问题的药物进行基于结构的分子机制研究,以提供药物设计信息。在这里,我们使用 Rosetta 结构建模和对接以及分子动力学模拟来研究抗心律失常和局部麻醉药物与 hNa1.5 的相互作用。这些计算揭示了在孔腔中形成的几个关键药物结合位点,这些结合位点可以同时容纳多达两个药物分子。分子动力学模拟确定了通过细胞内门的亲水进入途径和通过 DIII 和 DIV 之间的窗孔的疏水性进入途径。我们的结果推进了对抗心律失常和局部麻醉药物与 hNa1.5 相互作用的分子机制的理解,这对于新型治疗药物的合理设计将是有用的。