Sunami A, Glaaser I W, Fozzard H A
Cardiac Electrophysiology Laboratories, Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2326-31. doi: 10.1073/pnas.030438797.
Membrane-impermeant quaternary derivatives of lidocaine (QX222 and QX314) block cardiac Na(+) channels when applied from either side of the membrane, but they block neuronal and skeletal muscle channels poorly from the outside. To find the molecular determinants of the cardiac external QX access path, mutations of adult rat skeletal muscle (micro1) and rat heart (rH1) Na(+) channels were studied by two-electrode voltage clamp in Xenopus oocytes. Mutating the micro1 domain I P-loop Y401, which is the critical residue for isoform differences in tetrodotoxin block, to the heart sequence (Y401C) allowed outside QX222 block, but its mutation to brain type (Y401F) showed little block. mu1-Y401C accelerated recovery from block by internal QX222. Block by external QX222 in mu1-Y401C was diminished by chemical modification with methanethiosulfonate ethylammonium (MTSEA) to the outer vestibule or by a double mutant (mu1-Y401C/F1579A), which altered the putative local anesthetic binding site. The reverse mutation in heart rH1-C374Y reduced outside QX314 block and slowed dissociation of internal QX222. Mutation of mu1-C1572 in IVS6 to Thr, the cardiac isoform residue (C1572T), allowed external QX222 block, and accelerated recovery from internal QX222 block, as reported. Blocking efficacy of outside QX222 in mu1-Y401C was more than that in mu1-C1572T, and the double mutant (mu1-Y401C/C1572T) accelerated internal QX recovery more than mu1-Y401C or mu1-C1572T alone. We conclude that the isoform-specific residue (Tyr/Phe/Cys) in the P-loop of domain I plays an important role in drug access as well as in tetrodotoxin binding. Isoform-specific residues in the IP-loop and IVS6 determine outside drug access to an internal binding site.
利多卡因的膜不通透性季铵衍生物(QX222和QX314)从膜的任一侧施加时均可阻断心脏钠通道(Na(+)通道),但它们从外部对神经元和骨骼肌通道的阻断作用较弱。为了找到心脏外部QX进入途径的分子决定因素,通过非洲爪蟾卵母细胞中的双电极电压钳技术研究了成年大鼠骨骼肌(micro1)和大鼠心脏(rH1)钠通道的突变情况。将micro1结构域I的P环中对河豚毒素阻断中同工型差异起关键作用的残基Y401突变为心脏序列(Y401C)可使外部QX222产生阻断作用,但其突变为脑型(Y401F)时几乎没有阻断作用。mu1-Y401C加速了内部QX222阻断后的恢复。用甲硫代磺酸乙酯铵(MTSEA)对mu1-Y401C的外部前庭进行化学修饰或通过双突变体(mu1-Y401C/F1579A)改变假定的局部麻醉药结合位点后,mu1-Y401C中外部QX222的阻断作用减弱。心脏rH1中的反向突变C374Y减少了外部QX314的阻断作用并减慢了内部QX222的解离。如报道的那样,将IVS6中的mu1-C1572突变为心脏同工型残基苏氨酸(C1572T)可使外部QX222产生阻断作用,并加速了内部QX222阻断后的恢复。mu1-Y401C中外部QX22应用的阻断效力高于mu1-C1572T,并且双突变体(mu1-Y401C/C1572T)比单独的mu1-Y401C或mu1-C1572T更能加速内部QX的恢复。我们得出结论,结构域I的P环中的同工型特异性残基(酪氨酸/苯丙氨酸/半胱氨酸)在药物进入以及河豚毒素结合中起重要作用。IP环和IVS6中的同工型特异性残基决定了药物从外部进入内部结合位点的途径。